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SUMMARY

The objective of this research program is to extend the recent advances

in robust control system design of multivariable systems to sensor failure

detection, isolation, and accommodation (DIAl, and estimator design. This

effort provides analysis tools to quantify the trade-off between performance

robustness and DIA sensitivity, which are to be used to achieve higher levels

of performance robustness for given levels of DIA sensitivity. An

innovations-based DIA scheme is used. Estimators, which depend upon a model

of the process and process inputs and outputs, are used to generate these

innovations. Thresholds used to determine Failure detection are computed

based on bounds on modeling errors, noise properties, and the class of

failures. The applicability of the newly developed tools are demonstrated on

a multivariable aircraft turbojet engine example.

A new concept called the threshold selector was developed under this

_rogram. It r_pretants ,t _ignif_cant and _nnovative _ooI _or the analys_s _na

synthesis of OIA algorithms. Analytical results were obtained for the SISO

case to compute optimal thresholds and to determine the size of minimum

detectable failures, and a computer-aided technique was developed For the

multivariable case.

The estimators were made robust by introduction of an internal model and

by frequency shaping. The internal model provides asymptotically unbiased

filter estimates. The incorporation of frequency shaping of the LQG cost

functional modifies the estimator design to make it suitable for sensor

failure DIA.

The results are compared with previous studies which used thresholds that

were selected empirically. Comparison of these two techniques on a nonlinear

dynamic engine simulation shows improved performance of the new method

compared to previous techniques.
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I. INTRODUCTION

The use of analytical redundancy (as opposed to hardware redundancy) For

actuator/sensor failure detection, !solation, and accommodation (DIA) has been

an active area of research during the last decade. Failure detection is the

process of determining if a malfunction has occurred in a system. Failures in

a system are detectable if the outputs following the failure are statistically

different from the outputs prior to the failure. Failure detection implies

that a no-failure condition can be differentiated from a failure condition.

It does not imply that in the case of a failure, various failures can be dif-

ferentiated from each other. Failure isolation is the process of differenti-

ating between various failures which may occur in a system. Any two failures

may be differentiated from each other if the outputs following them are sta-

tlstlcally different. In general, more complex data processing is required

for isolation than for detection. Failure accommodation refers to the substi-

tution of a synthesized value for the faulty sensor's output.

The various techniques that have been developed _or DIA c_n jenerally _e

thought of as belonging to three categories: failure-sensitive filters,

multiple-hypothesis filter detectors, and innovations-based detection sys-

tems. A survey of various techniques up to 1975 can be found in Ref. l and

references to the more recent work is contained_in Refs. 2, 3, and 27. In

Ref. I, the issue of robustness of various techniques was pointed out as an

open area for research. However, little has been done in the way of robust-

ness analysis for various failure detection schemes. This study seems to be

the first to address this important issue directly. It presents a systematic

solution based on recent robustness analysis and design techniques [14] devel-

oped for multivariable systems. For example, Clark [2] points out the impor-

tance of robustness but his schemes have no guaranteed robustness properties.

Leininger _4} addresses the problem of parameter uncertainty (D.C. mismatch),

but does not come up with a remedy to guarantee robustness. The use of adap-

tivity for failure detection was discussed in a recent report [5]. However,

these techniques are known to have undesirable robustness properties unless

high-frequency unmodeled dynamics are taken into account.



This report addresses the important issue of robustness of sensor failure

detection, isolation, and accommodation(DIA) techniques. The approach is
based on extensions of robust control and estimation techniques and unifies
various DIA methods. It is important to note that the method has been made

practical so as to makean immediate impact on applied technology.

l.l PROBLEMSTATEMENT

The overall problem addressed in this report is the design of a robust,

multivariable control system for a jet engine. A typical block diagram of
such a system is shownin Figure 1.I. The blocks in the forward loop -- the

actuators, plant dynamics, and sensors -- constitute the system. The blocks

in the feedback system -- the control law, DIA logic, and the state estimator

contain the subsystems which are to be designed. The design objective,

ideally, is to select the proper configuration of these feedback subsystems

such that the closed-loop system exhibits performance robustness with respect

to system uncertainties and sensor failures.

!n this _t:Jdy, the control law obtained From Refs. 5 _nd 7 was _Jsed _nd

only the DIA subsystem was designed. In general, a comprehensive design tech-

nique would also consider the design of the control law as well.

Performance robustness requirements can be stated as tolerances on:

(PI) asymptotic behavior, e.g., steady-state command following and
disturbance rejection; and

(P2) transient behavior, e.g., speed of response, damping, over-
shoot, etc.

(P3) detection and isolation sensitivity, e.g. ability and speed of
correctly detecting a sensor failure.

Uncertainties in the system are caused by:

(UI) uncertain parameter values in the models of the actuators,
plant dynamics, and sensors;

(U2) unmodeled dynamics, e.g., the effect of neglecting high-
frequency phenomena, neglecting nonlinearities, and

intentional reduced-order modeling;
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(U3) sensor failures of a known type, e.g., slow drift in a sensor
bias;

(U4) DIA reconfiguration of the estimator and/or control law when
the DIA presumes a sensor failure; and

(US) uncertain external signals, e.g., sensor noise and
disturbances.

Model uncertainties of the type in (Ul) affect the steady-state

(asymptotic) behavior and are the predominant cause of estimator bias and

steady-state regulation errors. Those of the type in (U2) typically have a

greater effect at higher frequencies and show up in the transient response as

(possibly) undesirable behavior. A primary goal of this effort is to quantify

the effect of these uncertainties (UI-U5) on DIA system performance and

provide a design approach for improving DIA performance (PI-P3).

1.2 CONTRIBUTIONS

The general contribution of this research has been the extension of

recent advances in robust control system design to sensor DIA and estimator

design. The _oecific chntributions _re:

- analysis tools with which to quantify the trade-off between
performance robustness and DIA sensitivity;

- design methods which allow higher levels of performance

robustness to be achieved for given levels of DIA sensitivity;

- demonstration of the applicability of these tools using an
aircraft turbine jet engine multivariable control example.

The requirement for these goals is explained with the aid of Figure 1.2.

Plotted (conceptually) are levels of performance robustness against DIA

sensitivity. A trade-off is indicated. As a design becomes more robust, it

becomes less sensitive. Alternately, For a given level of OIA sensitivity,

there is a maximum level of performance robustness achievable within the

estimator and DIA logic design being applied. There are three curves in

Figure 1.2. The one labeled "current" refers to the current state of the art

DIA algorithms. The curve labeled "robust" refers to the idea of making the

OIA robust. This is the subject of the present study and will result in
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higher levels of performance robustness. The curve labeled "adaptive" points
to the fact that even Further improvements in performance maybe achievable by
an adaptive scheme. This requires basic research and would be the subject of
Future studies.

Curves such as those indicated in Figure 1.2, and more specifically in

Figure 1.3, constitute a powerful design aid. The quantities in these figures

will be defined precisely in the body of the report and these figures are
presented here only to provide a flavor of the results to be discussed.

Figure 1.3(a) showsthe threshold, Jth' in an innovations-based DIA scheme
as a function of a moving detection window, T. This threshold is a fixed

level against which somemeasureof the innovations signal is being compared.

A failure is declared if the measureexceeds the threshold. Figure 1.3(b)

showsthe minimumdetectable level of failure which is possible for a given
DIA technique. Thesecurves are functions of model error bounds, R.M.S.

noise, and the class of failure signals. Figure 1.3(b) showsthat the effect

of different estimator speeds can also be evaluated. The ability to generate
these curves is a powerful synthesis tool.

Plots such as shownin Figure 1.3 provide the meansby which to evaluate
design modifications madein search of the proper balance of robustness and

DIA sensitivity. Furthermore, they provide information applicable to
optimizing the search. The sensitivities of the system performance to design
changesare caiculatedand the effects of critical parameters are identified.

This research has developed the analysis tools required to construct
these curves. In particular:

a "threshold selector" has been created which quantifies the
effects of uncertainty on DIA performance;

measureshave been derived to quantify the uncertainty and the
performance robustness.

This study has also provided advances to robust estimator design to

achieve higher levels of performance robustness. Specifically, the
accomplishments are:
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the development of estimators using the "internal model
principle" to achieve asymptotic convergence despite model error;

the incorporation of frequency weighting in an LQGcost
functional to modify an estimator design to be suitable For
sensor failure DIA.

1.3 BACKGROUND

1.3.1 Previous Proqrams

Under subcontract to Pratt & Whitney Aircraft (PWA), Systems Control

Technology, Inc. (SCT) conducted two previous studies in the area of sensor

DIA under NASA contracts NAS3-22481, "Sensor Failure Detection System" and

NAS3-23282, "Sensor Failure Detection for Jet Engines." The present program

is an extension of these studies. The ultimate objective of all these

programs is to provide sensor fail operational control capability while

minimizing the required sensor hardware redundancy.

"Sensor Failure Detection System," NAS3-2248! [Bl)

The objective of this study was to develop an advanced concept for the

DIA of sensor failures in gas turbine engine control systems. Five concepts

were formulated from advanced techniques for sensor DIA. These concepts were

evaluated by application to a turbofan engine and multivariable control system

simulation. A simplified version of the simulation was used in the

preliminary screening process to select one of the DIA concepts. This

simplified model was also used for the filter designs in the various DIA

concepts.

A functional diagram of the selected advanced concept is shown in Figure

1.4. A normal mode filter, i.e., a filter designed to use all sensor inputs

with no failures assumed on those inputs, was used to generate the filter

residuals and the estimated measurements. The DIA concept used innovations

from the filter to detect hard failures and used the weigh ced sum-squared

residuals (WSSR) technique to detect soft failures. Isolation of soft
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0 Failures was accomplished by likelihood ratio (LR) based testing of

innovations from a bank of Kalman filters, each designed with the assumption

of one failed input. Accommodation was accomplished by reconfiguring the

normal mode filter to eliminate the failed sensor from the inputs to the

filter. The DIA concept is summarized in Table l.l. The DIA concept selected

was compared against a baseline DIA concept based on the conventiona|

techniques of parameter synthesis.

-i

Table I.I

Advanced Concept for Detecting, Isolating, and Accommodating
Sensor Failures

Detection Innovations testing based on WSSR technique for soft
failure. Innovations testing against thresholds for

hard failures.

Isolation On-line isolation of hard failures using innovations

testing; off-line isolation of soft failures using LR

technique. Both structures employ bank of Kalman
filters.

Accommodation Reconfiguration and reinitialization of normal mode
filter.

The configuration of the multivariable control and the components of the

DIA logic used in conjunction with the engine simulation is shown in Figure

1.5. The form of the control law is given by

Au = Ub+ Cp(Zp - zpb) + CI (z I - Zlb) dt (l.l)

BLc]T "
where u is the input vector [WF AH ClVV RCVV , Zp is the estimate of

theA output vector, [NI N2 PT4 PT6 FTIT] T, and z I is a subset of the vector

Zp. denotes the estimates, ub, zpb, and Zlb are the base point vectors

and Cp and CI are proportional and integral control gain matrices. The
proportional part of the control law provides regulation and the integral part

provides trim for the fan speed (NI) and augmentor pressure (PT6). Note that

the control law uses the estimates For both the proportional and integral

portions.

II
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As a result of this program, the advanced DIA concept was shown to be a

viable DIA technique for application to gas turbine engines. While the

performance of the advanced concept was generally good and its feasibility was

demonstrated, several problem areas were identified. These included:

- steady-state and dynamic mismatch of the simplified nonlinear
model;

- steady-state estimate errors with no failures induced;

- instabilities when accommodating failures;

- accommodation inaccuracies;

- missed detections and false alarms; and

- limited coverage on the flight envelope.

The models used in the no-failure filter and the isolation filters

contained modeling errors which contributed to the above problems. The hard

and soft failure-detection thresholds and the soft failure-isolation threshold

were chosen empirically. They encompassed an estimate of model errors, and

estimates of sensor noise and bias errors, and a built-in safety factor.

Since the model errors were large, the thresholds were large and contributed

to missed detections and False alarms and the overall poor detection

performance for very slow drift failures.

"Sensor Failure Detection for Jet Enqines., NAS3-23282 Fg_

The objective of this program was to develop refinements to the sensor

failure OIA algorithm (Figure 1.4) developed under NASA Contract NAS3-224Bl.

These refinements included:

improvement of the steady-state accuracy of the simplified model
of the engine;

improvement of the dynamic characteristics of the simplified
model to be comparable with the nonlinear thermodynamic

simulation;

refinements to the DIA algorithm to be compatible with the
improved model;

13



- elimination of the steady-state errors with no sensor failures
caused by biased filter estimates;

- accommodationinaccuracies in case of failure detection and
isolation;

- missed failure detections and false alarms.

Three revisions were developed and evaluated to address the above

improvements. A detailed, nonlinear thermodynamic simulation was used to
evaluate each revision. As a result, one revision was chosen for detailed

evaluation and Full envelope operation. This DIA algorithm has been

programmed on a real-tlme, microprocessor-based controls computer [lO, Ill at

NASA Lewis Research Center in preparation for testing as part of a closed-loop

control of an engine in a test cell.

This DIA concept, referred to as Revision 2 in the previous contract [g],

operated as follows. In the case of no sensor failures, the outputs of the

normal mode filter were fed to the proportional control part and the sensed

outputs (Nl and PT6 only) were fed to the integral control. This ensured that

in steady state, the engine outputs were at the reference point, i.e., there

were no steady-state hang-off errors. In the case of a failure, the

synthesized value of the outputs were fed to both the proportional and

integral controls. Note that if the failed sensor is N1 or PT6, the integral

logic ensured that the estimates of these measurements were driven to the

reference point. A detailed block diagram of the overall system is shown in

Figure 1.6.

The form of the control law, as shown in Figure 1.6, is given by:

No Failure:

u = ub _ Cp(Zp - zpb ) + Clf(z I - Zlb ) dt (1.2)

Failure:

f-u = u b _ Cp(Zp - zpb ) + CI (z I - ZIb) dt (1.3)

14
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The symbols ar.e the same as in (1.I). Note that the estimates are being used

in the integral trim portion after failure isolation.

As part of the revision evaluation process, SCT:

(I) generated new gain matrices for both the normal and failure
mode filters used in the DIA algorithm;

(2) defined a minimum complexity DIA algorithm;

(3) examined estimator gain sensitivity to flight condition; and

(4) developed the revisions for correcting the bias problem in the
estimator outputs.

As a result of this study, the advanced DIA technique (Revision 2) was

shown to have improved performance over the technique chosen in the first

program. However, model errors limited the performance of the estimators and

made determination of detection and isolation thresholds difficult. The

present study attempts to alleviate these problems.

The scope of the present research effort is to develop an analytic

u_derstanding of the problems by applying the tools of robust multivariable

control theory to accommodate modeling errors.

1.3.2 The Fundamental Issue: Model Uncertainty

The previous section has identified model uncertainty as the main source

of problems in sensor DIA algorithm design. Model (system, plant) uncertainty

refers to the uncertainty in the errors between the nominal model and the

actual system. There are two generic uncertainty representations: structured

and unstructured [13]. The former refers to model parameters which are

uncertain. The latter refers to unmodeled dynamics which are also uncertain.

Reduced-order modeling techniques, linearization about operating points,

neglecting nonlinearities, etc., all result in contributions to either

structured or unstructured uncertainty. Figure 1.7 illustrates how

uncertainties can appear in a control system which includes sensor failure DIA

16
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logic. The "blocks" represent fixed devices or processors. The "clouds"
represent the system uncertainty and can be broadly grouped into two classes:

(1) uncertain (external) inputs

r - reference commands

d - environmental disturbances

b - biases or drifts in a failed sensor

(2) uncertain (internal) dynamics, defined by the Following
transfer function matrices:

AM(S) - plant model errors

as(S) - sensor failures

Ac(S), BE(S) - control law and estimator reconfigurations from
DIA

Since model uncertainty is the source of most difficulties, an approach

is needed to deal with it in an effective manner. Robust DIA design provides

a means to do this.

1.4 METHOD OF APPROACH

The method of approach developed in this report is to use robust control

theory for threshold selector analysis and robust DIA filter design (as

described in Section 1.2). This requires the isolation of uncertainties as

shown in Figure l.?. The approach establishes quantitative statements about

the interrelation among performance, robustness, and system uncertainty.

Figure 1.8 illustrates how all the uncertainties can be separately grouped for

analysis. The external inputs, such as commands, disturbances, and failure

biases, enter the system From the "outside." The dynamic uncertainties, such

as model errors, sensor failures, and DIA reconfigurations, are "inside" the

system and function as a feedback loop around the "interconnection" system.

The interconnection system maps the external and internal uncertainties into

the outputs, i.e. tracking error and filter residuals.

18
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Upuntil recent years, there has been no unified control design approach
for such a system as shown in Figure 1.8. Researchefforts [13-15], which are
elaborations on the Small Gain Theorem[16,17] have established the

mathematical framework For such an approach. Basically, the dynamic uncertain-

ties (AM, aS, aC, 8E) all propagate in a specific way so as to cause a
quantifiable uncertainty about the mapFromthe inputs (r,d,b) into the

outputs (e,y), provided bounds can be found for the dynamic uncertainties.

These boundsare obtainable from simple input/output system tests.

Furthermore, if the nominal system model is linear, the boundsand subsequent

input/output errors are fully representable in the Frequency domain. For

example, the effect of all dynamic uncertainties on the tracking error and the

filter residuals can be represented by simple graphs. For good tracking with

no sensor failures, the error response and the filter residuals should be

small over all frequencies. On the other hand, if a failure occurs -- either

a bias/drift b or structure change AS -- then the filter residual

frequency signature should be dramatically different from the normal

(unfailed) mode. Otherwise, detection is not possible.

The approach _til!zes the Following recent advances [13-20] in control

theory:

(1) Uncertainty Propagation [15]

The dynamic uncertainties, as shown in Figure 1.8, can be bounded in

a sector in the Frequency domain which then propagates through the

interconnection system so that the system input/output map is also in a sector

in the frequency domain. These sectors determine quantitatively the

performance/robustness trade.

(2) Internal Model Principle [IB]

The principle states that asymptotic tracking and disturbance

rejection in the presence of plant uncertainty can only be achieved if the

controlled system contains a replica (internal model) of the commands and

disturbance signal generators. For example, tracking constant commands

requires integrators in the loop.
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These control design advances, together with methods for frequency-shaped

LQG[26] allow for design of either the DIA logic or control/estimator
directly in the frequency domain. Thus, if detection is desired for a

particular failure, the compensation required can be seen in the Frequency
domain exactly. Simultaneously, one can determine the effect of the new

compensation on tracking performance. A similar procedure can be used for

adaptive design.

These ideas are illustrated in the flowchart of Figure 1.9, which shows

how the tools generated from the method of approach can be used in a design

process. Notice that the mode]ing errors combine with the sensor failures and

the errors from DIA reconfiguratlons to Form the system dynamic uncertainty.

It is possible to determine a bound on this uncertainty. The control system

(estimator/control law/DIA logic) is then evaluated in the frequency domain by

propagating the dynamic uncertainty as outlined above. The evaluation process

yields quantitative results which suggest how to modify or robustify the

design. This is an iterative process.

.r

Notice that there are three levels of design. Constant gain DIA filters

provide a "first cut" design. Optimal thresholds for these filters can be

determined as well as minimum size of detectable failures (Level l). Note

that these computations are a function of bound on model error, noise, and

class of Failures. If a higher level of performance is required, a robust DIA

design can be carried out as shown in the flowchart (Level 2). Still better

performance is possible by making the DIA filters adaptive (Level 3).

1.5 OUTLINE OF REPORT

This chapter has discussed the background and problem statement for this

research effort. Current technology approaches were reviewed. The

fundamental problem to be dealt with in DIA logic design, to achieve better

performance, has been identified as model uncertainty. The proposed solution

has been discussed at a high level. The rest of this report contains the

technical details of the method of approach.
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Figure 1.9 Design Approach
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Chapter II discusses the effect of model uncertainty on stability and
performance. Both stability and newperformance robustness measuresare

developed. The performance robustness measuresare with respect to tracking

and disturbance rejection properties of the system. The effect of model
uncertainty on asymptotic tracking capability is discussed. It is pointed out

that for adequate asymptotic performance, an internal model is necessary.

This creates certain so-called "structurally robust blocking zeros" to
guarantee asymptotic performance.

Chapter Ill discusses the effect of model uncertainty on sensor failure

DIA. The fundamental concept of the threshold selector is introduced. This

represents a new, innovative tool for the analysis and synthesis of DIA

algorithms. The threshold selector concept is illustrated both for a scalar

example and for a model of a multivariable turbofan jet engine. A closed-form

solution has been obtained for the scalar case, and a computer-aided design

(CAD) approach was developed to solve the multivariable case.

Chapter IV discusses the design of robust filters for sensor failure

DIA. The robustness of the Filter _s ,_ue to the presence of an internal model

(as discussed in Chapter II) and due to the frequency-shaplng of an LQG cost

functional. The formulation and mathematical details of the frequency-shaped

filters are discussed in this chapter. Results from an example using a

dynamic simulation of a turbofan jet engine are presented.

Chapter V presents the results of an evaluation study comparing the

performance of the proposed robust DIA scheme to one of the schemes developed

in Ref. g. It is found that the performance of the two techniques is similar

For hard Failures, but the proposed scheme shows considerable improvement in

the case of soft failures.

Chapter VI provides some concluding remarks and directions for future

research.

Appendix A discusses model uncertainty and contains a procedure along

wlth results for generation of a bound on model error for a jet engine.
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1.6 REMARKSONNOTATION

Standard notation from control theory literature has been used whenever

possible. For example, time domainquantities are usually denoted by lower

case, whereas the samequantity in the frequency domain has been denoted by
upper case. However, there are several exceptions. Lower case b(t) is used

to denote a bias in the time domainand b(s) denotes the samequantity in
the frequency, and similarly for _(t) and v(s). There are other
exceptions that are generally clear from the context.
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II. MODELUNCERTAINTYANDITS EFFECTONSTABILITYANDPERFORMANCE

Model uncertainty is the main problem in DIA algorithm design as

discussed in Chapter I. Howmodel uncertainty manifests itself affects what

one can do to achieve a high performance DIA algorithm. Hence, its effects on
stability and performance need to be studied before addressing its effects on

detection and robust filter design (to be discussed in Chapters Ill and IV,

respectively. This chapter discusses the sources of model uncertainty in

dynamic systems. Both unstructured and parameter uncertainty are considered.

Detai}s on model uncertainty and a procedure for computation of its bound for

a jet engine example are contained in Appendix A. This chapter concentrates

on the effects of model uncertainty on stability and performance properties of

the system. New measures are defined for performance robustness analysis

which are similar to the well-known stability robustness measures [13]. The

effect of model error on asymptotic tracking is explored. It is shown that an

internal model is required in the DIA filter to eliminate the effect of the

biases on the outputs of the system asymptotically. The inclusion of the

internal model results in creation of certain structurally robust blocking

transmission zeros to guarantee robustness.

2.1 MODEL UNCERTAINTY

A very natural way to determine model uncertainty is to perform an

experiment which compares the model with data From the actual system (plant).

If there is no error between the model and the plant, then one has perfect

knowledge of the plant. Normally, this is not the situation -- the error is

non-zero and represents how close the model is to the plant. For example,

consider the simple experiment depicted in Figure 2.1(a), where e is the

error between the perturbation output _Yp = Y - Yo from the actual

plant and the corresponding output _Ym of the linearized model; 6u

is the perturbation input to both the plant and linearized model. Po(S) is

a transfer function matrix description of the model.
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Figure 2.1 Experiment to Determine Model Uncertainty
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By applying sinusoidal test inputs, one can experimentally obtain a
frequency-dependent boundas shownin Figure 2.1(b). Often, a good model will
be accurate at a certain frequency range, small _(_)*, and less accurate

at other frequencies, large 6(w). Figure 2.1(b) is characteristic of

unmodeled high-frequency phenomena, incorrectly modeled parameters, as well as

some types of neglected nonlinearities. For jet engine models, the key

problem is "DC mismatch," i.e. non-zero error at low frequency. This is the

predominant cause of setpoint "hang-off" and estimator bias.

Sources of this type of uncertainty may be quite diverse. Slowly

drifting parameters in an otherwise perfectly known linear time invariant

(LTI) plant could wield the same uncertainty description as a plant with

unknown nonlinearities approximated by an LTI model.** The key feature of

this uncertainty is that, although it is bounded, one does not know the

structure. Following Ref. 2, this is called the unstructured uncertainty of

the model P (s). Essentially, the unstructured uncertainty indicates the
o

accuracy of the model in the neighborhood of the equilibrium. Equivalently,

the plant input/output behavior in the neighborhood of the equilibrium can be

described by the linearized uncertain model

Pm(S) = (I _ a(s))Po(S) (2.1)

where a(s) is the LTI unstructured output-multiplicative uncertainty

operator with transfer function matrix A(S). All that is known about

a(s) is that it is stable, causal, and bounded by

_[a(j_)] < a(_), _ >0 (2.2)

where _(-) denotes the maximum (upper) singular value.

* 6(_) representing mode] error is not to be confused with perturbation

quantities such as _Yp, 6Ym, etc.

** To reflect parameter errors in a(_) may require a very large number of

experiments as shown in Figure 2.1(a).
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In a general way, unstructured uncertainties account for all neglected
dynamics, approximated nonlinearities, etc.

Onefurther remark about the uncertain linearized model Pm(S). For
every input/output pair (u, y) which satisfies

Y(s) = P(s) U(s) (2.3)

in the neighborhood of the equilibrium, there exists a Pm(S)

(equivalently, a a(s)) such that Y(s) = P(s) U(s). One way to view this

is to imagine that a(s) contains a sufficiently large (theoretically

infinite) number of adjustable parameters so that any input/output can be

perfectly matched. The bound on a(s) in (2.2) conveys the worst case

situation. Note that a(s) can be infinite dimensional, without loss of

generality.

Parameter Uncertainty

Modeling of plant uncertainty by the description given in (2.1) and (2.2)

will be used throughout. A state-space linear plant model is assumed to be

given by

= AoX + BoU (2.4)

y=Cx+Du
0 0

with a corresponding model transfer function matrix

-l
Po(S) = Co(Sl - Ao) Bo ÷ DO (2.5)

This model is valid only for input/output behavior restricted to a

neighborhood of the equilibrium point. A new equilibrium point will have a

different nominal model, i.e., the parameters in P (s) will change as a
o

Function of the equilibrium. This is easily seen in the definition of

Po(S) given by (2.5). In a general way, one can consider the nominal model
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to be a parametric model, where the parameters are adjusted to best fit the
input/output data.

For example, let P (s) denote a parametric model of an uncertain
plant P(s), where _ is a k-vector of parameters in the model. Standard

Rkparameter identification methodscan be used to find the best _ c to

fit the data from the actual plant. For example, given plant input/output

(u, y) on the interval t c[O, T_, a good parametric model is founddata

from

inf IIy - YallT (2.6)

:cR k

where

suitable norm, such as the L2 norm

(/o )UxHT = x'(t) x(t) dt I/2

The perfect matching condition

Y (s) = P (s) U(s)

inf denotes the greatest lower bound or infimum and II.II is a

(2.7)

(2.8)

for some a and all (u, y) is never achieved for models of actual systems.

The usual situation is the opposite. In fact, there is usually a range of

which solve (2.6).

The variations in _ can be considered as uncertain parameters in the

model. Since these parameters enter into the model in a definite manner, they

can be referred to as the structured uncertainty of the model [13-15]. In a

general way, unstructured uncertainties account for all neglected dynamics,

approximated nonlinearities, etc. The structured uncertainty essentially

yields the range of parameter variation in the model for a best fit of the

data.

Parameter (or structured) uncertainties can also be viewed in a slightly

different way. Consider the system
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= + 6A)x ÷ (B + _B)u(Ao o

y= C x
0

where (Ao, Bo, CO) are the nominal system matrices and

represents a perturbation in the system parameters.

(6A, 6B) are known to be bounded such that

(2.9)

(_A, 6B)

Suppose further that

;(6A) C a, ;(6B) _ b (2.10)

Following the procedures developed in Refs. 4 and 5, one can construct bounds

which inc]ude these parameter perturbations. Such a construction is useful

when analyzing the effect of specific parameter uncertainties. Bounds on

model error constructed in this way account for the type of uncertainties

discussed by Leininger [4].

2.2 EFFECT OF UNCERTAINTY ON STABILITY AND PERFORMANCE

The model uncertainty discussed in the previous section has significant

effects on both stability and performance of the system under feedback

control. This section establishes quantitative trade-offs between uncertainty

and stability, as well as performance. For this purpose, generic DIA

configurations need to be considered for analysis and design purposes. In

previous programs [8, g], an estimator was designed as part of the DIA logic

to provide synthesized estimates of system outputs. The estimator may operate

both as part of the Feedback loop or out of the feedback loop.

Consider the two generic candidate design schemes shown in Figures 2.2

and 2.3. The design in Figure 2.2, referred to as DIA l, shows a feedback

control system with an estimator running out of the control loop, i.e.,

"piggyback." The design in Figure 2.3, referred to as DIA 2, shows the

estimator running in the loop. In both cases, the estimators contain the

nominal plant model Po(S), which approximates the actual plant Pm(S),

and a dynamic Filter gain F(s), such that
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Y(s) : Po(S)U(s) + F(s)v(s) (2.11)
A

v(t) = z(t) - y(t) (2.12)

z(t) = b(t) + y(t) (2.13)

where y(t) is the estimate of the output y(t), v(t) is the innovations

signal, and z(t) is the sensor output, which is composed of the engine

output y and a bias signal b(t) which represents both sensor noise and a

class of sensor failures. The estimator structure (2.11) is equivalent to the

usual state space structure for estimators/observers, where

x = Ax ÷ Bu ÷ Kv(t), v(t) = y(t) - y(t)

y = Cx + Du

In this case, the nominal plant model and filter are, respectively:

(2.14)

(2.15)

-l
Po(S) = C(sI - A) B + D (2.16)

-l
F(s) = C(sI-A) K (2.17)

The control signal is given by

U(s) :
i Gc(S)(R(s)-Z(s))' D[Al

I Gc(S)(R(s)-Y(s)) DIA 2

(2.18)

(2.19)

where R is the reference command and G (s)
c

function.

is the controller transfer

Both of these designs capture the significant characteristics of current

DIA schemes as well as being general enough to account for a large class of

alternate DIA schemes. For example, DIA 1 is representative of either:

(i)

(2)

a nominal (no Failure) controller with DIA logic based on a
"piggyback" estimator; or

a reconfigured system where Gc(s ) is a controller/estimator
combination with an estimator out of the loop for further DIA
action.
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Note that in (I) and (2) above, the out-of-loop estimator need not be the
same. Similarly, DIA 2 is representative of either:

(3) a nominal (no failure) system where the DIA logic is based on
an estimator in the loop; or

(4) a reconfigured system where the DIA logic is based on the
estimator in the loop.

As in (1) and (2), the estimators in (3) and (4) need not be identical.

2.2.1 {ffect of Model Error on Stability

In this section, tools are developed for determining the effect of

uncertainty on stability of DIAl and DIA 2. It will be assumed here that the

plant is represented by

Pm(S) = (I + a(s)) Po(S)

with

(2.20)

_[A(j_)] < a(_) , _ > 0 (2.21)

where P (s) is the nominal engine model obtained by linearization about an
o

equilibrium and a(s) is the unstructured model uncertainty.

In order to analyze the systems, it is necessary to determine the

transfer functions defined implicitly by,

E(s) = HerR(S) + Heb(S)b(s) (2.22)

u(s) = Hvr(S)R(s) ÷ Hvb(S)b(s)
(2.23)

The most convenient way to do this is via the "interconnection" structure

where the uncertainty a(s)

= er

s) H r

is isolated [15] as shown in Figure 2.4,

H b b(s)

(2.24)
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A more detailed discussion of the interconnection system is provided in the
next section. For DIA l, one gets (suppress the 's' variable)

-l
Her = S(I + AT)

-I
Heb = T + S(l + AT) AT (2.25)

-l
H : L(I + AT) AT
_r

-l

Hvb = L(I + AT)

and likewise for DIA 2, one gets

H
er

-l
= S - S(I + GL)(I + ATM) AT

Heb = TM + S(I + GL)(I + ATM) ATM (2.z6)

-l
H = L(I + ATM) AT
vr

-I
H b = L(I + ATM)

where

G=PG
O C

-l -l
S = (I + G) , T = (I + G) G (2.27)

-I -I
L = (I + F) , M : (I + F) F

The transfer functions (2.25) and (2.26) are stable if

(1) S, T, M, and L are stable

(2) _£(_)_[T(j_)] < l, _ >_0 (2.28)

(3) &(_)_[T(J_)M(J_)] < I, _ _ 0

Consider the Following scalar example, where
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a a
Po(s) = _s+a' Gc(S) = 1 +-s (2.29)

k
F(s) = _ (2.30)

s+a

and From (2.27),

a s
G,= S =_s ' s+a '

a
T : s+a (2 31)

s+a k
L = M=

s+a+k ' s+a+k

Consequently, conditions (2) and (3) above yield the following model error

bounds-

, _ >_0 (2.32)

( °) + ( ) , _>0

The above bounds can be interpreted as the maximum permissible bounds on

model error for which the system (DIAl or DIA 2) remains stable. For

example, if the actual model error is predominantly DC mismatch where the DC

gain is known to within ±lO percent, i.e., _ = .l, then the above is

certainly satisfied.

2.2.2 Effect of Model Error on Performance: Performance Robustness

Performance refers to the behavior of the system in relation to specified

objectives, such as transient response, command following, and disturbance

rejection. Performance robustness is the ability of the feedback system to

maintain a performance specification despite plant uncertainty. In order to

realize such robustness properties of feedback, it is necessary to establish

quantitatively the trade-offs and relationships among performance, robustness,

and plant uncertainty. Presented below is a method for directly analyzing

performance robustness of uncertain multivariable systems.
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2.2.3 Conic Sectors

Structured and unstructured uncertainties can both be viewed as belonging

to an Lp-conic sector, defined as follows [15]:

Definition: A relation (u, y) c H is _nside the L -conic sector,
P

denoted H c L -Cone (C, R, S) if For some p c [l, ®] there exists
P

compatible operators C, R, and S such that H - C is L -stable* and
P

ItS(y - Cu), < nRull For all (u, y) c L x L with y ¢ Hu.
p- p P P

In the case of L2-stable LTI operators R, S, and H-C with transfer

function matrices R(s), S(s), and H(s)-C(s), respectively, the L2-conic

sector is equivalent to the frequency-domain condition,

7[S(jw)(H(j_)-C(j_))R-I(jw)] _ l, -_w (2.33)

Let _ = diag (:l "" °k) be a diagonal matrix containing all the

structured uncertainties. Equivalent statements for plant uncertainty with the LTI

model P [_] of P is that the structured uncertainty _ c L2-cone (0, B I_m _ s,

where B = diag (Bl ... Bk) and the unstructured uncertainty r ¢ L2-cone (0,

I, I). Thus, conic sectors conveniently describe typical model (plant) uncertainty.

2.2.4 Plant Interconnection Model

It is convenient to represent the uncertain plant as shown in Figure 2.5,

which is patterned after the uncertain system descriptions presented in

Ref. 15. The operator

(oo)A = (2.34)

0 F

* A relation H is said to be L -stable if for all u c L , y c Hu c L ,
P P P

and there exists finite positive constant k such that llyllp_< kllUllp.
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contains all the uncertainties in the plant -- both structured and
unstructured. The operator H is referred to as the plant interconnection

system and serves to isolate all the uncertainties in A from the rest of

the plant. Consequently, H is completely known. The governing plant

equations are then

(y)(u)(HH)(u)= H -- yu yv

Z V HZU HZV v

(2.35)

v = AZ (2.36)

The plant input/output relation is given by

y = P[a]u

with

-l
P[A] = P + H (I - AH ) AH

0 yV ZV ZU

where P is the nominal plant defined by
0

P = PEA] = H
o a:O yu

The uncertainty a can also be viewed as belonging to a conic sector,

i.e. a c L2-Cone (0, R, I), R = diag(B, I) which implies the conic

sector descriptions of the uncertainties of _ and r. The plant

representation shown in Figure 2.5 is extremely useful in evaluating

performance of the closed-loop system. With an LTI model, the conic-sector

bound on _ is equivalent to the Frequency-domain condition,

(2.37)

(2.38)

(2.39)

_[a(J_)R-l(J_)] ! l, R(j_) = diag(B, _(_)I) (2.40)

2.2.5 Normalization

-l
AR

The uncertainty and interconnection system can be normalized. Let

replace A, RHzv replace Hzv, and RHzu replace
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Hzu. P[a] nowhas the sameform as before, but 8 is normalized so
that

8 c L -cone (0, I, I)P

For convenience, assumethat henceforth these replacements have been madeand

the plant interconnection system is normalized.

2.2.6 Performance Robustness Measures

Consider the feedback system shown in Figure 2.6. The plant has the

transfer function

P(A) = Po(S) (I + 8(s)) (2.41)

where Po(S) is the nominal plant transfer function and

the unstructured input-multiplicative uncertainty. P (s)
o

terms of state variable matrices is

-l
P (s) = C(sl-A) B _ D
o

The closed-loop interconnection system is

IY = I HYR(s) Hvd(s) Hyv(S) 1
z LHzR(s) Hzd(s) Hzv(S)j IRId

V

where for a unity feedback system ("suppressing" s)

-I
HyR = (I . Po Gc) Po Gc

-I
Hyv : (I ÷ Po Gc) Po

-I
HZV : - (I _-G c Po) Gc Po

-I

HZR = ([ + Gc Po) Gc

a(s) represents

expressed in

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

40



"O

I--

Z

-I
0.

l'--

I.I.I
(J

Z

I

N

n=

(J

CO

O
I-.

Z

ILI

r,

:E
O
(J

.w
(=.)

.,..,

,,.=.

t=.

"3
L.
4,)

"4'--

=

n.=,.

o
f,=.

o

f,.
::3

41



Now assume that the tracking performance requirements are expressed in the

frequency domain in terms of

ItHyR(8) - HyRII

IIHyRII
< p(=) ,.,>_0 (2.48)

where HyR is the nominal input-output transfer function, HyR(A) is

the perturbed input-output transfer function and p(_) represents some

given function of frequency which specifies tolerable tracking performance

degradation. Furthermore, if 6(_) represents a bound on model

uncertainty, i.e.

tIall< 6(=) _ >_0 (2.49)

then the tracking performance robustness properties of the system is described

by the Following theorem.

Theorem 2.1" Assume that the tracking performance requirements are

expressed by (2.48) and the closed-loop interconnection system is stable.

Then tracking performance requirements are guaranteed if

_PRT(_) > 6(_) _ _ 0

where

(2.50)

_PRT(W) =

p(w) _(HyR)

a(Hzv)a(HyR)p(w) _ a(Hyv)o(HzR)

(2.51)

is the tracking performance robustness measure.

Proof" Assuming d = O,

-l

HyR(A) = HyR ÷ Hyv(I - aHzv) A HZR

Substituting (2.52) Into (2.48), one obtains

-l

IIHyv(I - AHzv) 8 HZRII _ p(_) IIHyRII

from Eqs. (2.38) and (2.43), it follows that

(2.52)

(2.53)
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Using the matrix inequalities

_(AB) > _(A) £(B) (2.54)

_(I - C) _ l - _(C) if _(C) < l (2.55)

l

__(A) - _(A- l)

(2.56)

then it follows from (2.53) that

o(Hyv) a _(HzR)

1 - & ,_(Hzv)
p(_) _(HyR) (2.57)

Solving for the worst-case value of a in (2.57) and naming the particular

value satisfying (2.57) 6pR T we have

_pR T =

p(_) _(HyR)

_(Hzv)_(HyR)p(_) + ;(Hyv)_(HzR)

(2.58)

Therefore, so long as

< SpR T
(2.59)

then (2.57) is satisfied and the tracking performance robustness is guaran-

teed. Q.E.D.

Suppose that the disturbance rejection performance robustness is

expressed as

IIYII< B(_) _ >_.0 (2.60)

where _(_) describes the allowable disturbance rejection performance

degradation. The following theorem describes the performance robustness

properties of the system.
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Theorem 7.2: Assume that the disturbance rejection requirements are

expressed by (2.60) and the closed-loop interconnection system is stable.

Then the disturbance rejection performance robustness is guaranteed if

_PRD(_) > _(_) _ _ 0 (2.61)

where

B - _(Hyd)
= (2.62)

6PRD(W) _(Hzv)(8__(Hyd) ) +-o(Hyv)_(Hzd)

is the disturbance rejection performance measure.

Proof: Assuming R = O, from (2.36) and (2.43) it follows that

-l

Hyd(A) = Hyd + HyvA(I - HZVA) Hzd
(2.63)

and

-l
lIHyd + Hyva(I - HZVA) Hzdll < (]

(2.64)

Using the matrix inequalities (2.54) through (2.56), the above equation can be

written as

;(Hyd)(1 - ;(Hzv) _) + ;(Hyv) & ;(Hzd)

1 - 6 ;(Hzv)

< (] (2.65)

Solving for the worst-case value of

we obtain

from (2.65) and naming it 6 (e)
PRD

6pR (w) =
D

8 - o(Hyd)

_(Hzv)(B - _(Hyd)) + _(Hyv)_(Hzd)

(2.66)

Then, so long as

< &pR D
(2.67)

(2.65) is satisfied and the disturbance rejection performance robustness is

guaranteed. Q.E.D.
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The stability robustness measure for the system is given by [13]:

l
_SR(_) -

_(Hzv)

and the system is stable provided that

(2.68)

6SR(W ) > _(_) (2.69)

It is easy to see that

_PRT(_ ) < 6SR(_) _ _ 0 (2.?0)

> 0 (2.71)
_PRo(_) < _SR(_)

Figure 2.? shows the stability and performance robustness measures for a

fifth-order multivariable system for 5% performance degradation from nominal.

These measures then establish how accurate the plant model has to be for

specified performance as a function of frequency. Note that various

controller designs can be evaluated on the basis of these measures.

2.2.7 Effect of Model Error on Asymptotic Trackinq

The discussion to Follow will illustrate the internal model, principle

[18], namely that, design of robust filters (and controllers) to achieve

asvmptotic tracking and disturbance rejection, despite model error, can only

be accomplished if a model of the command and disturbance is incorporated in

the filter (controller). It is shown that the inclusion of the internal model

creates appropriate structurally robust blocking zeros.

The critical performance measure for engine control is the ability to

achieve asymptotic tracking despite model error at DC. This section

highlights some of the main issues associated with this problem.

In order to evaluate the effect of model error on asymptotic tracking,

assume that the following conditions hold:
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(I) The model error satisfies (2.28), i.e., the system is stable.

(2) The reference r(t) _ rss (constant) as t _ -.

(3) There is no sensor failure, i.e., b = O.

These conditions, together with (2.31), yield the following steady-state

signals for DIAl (estimator out of loop):

e : 0 (2.72)
SS

-I
Hvr = L(I+AT) AT

s÷a a -l a (2.73)
= s+a+k (l + a _+a ) A s+a

v(s) = Hvr(S) R(s) (2.74)

aa(O)
Uss(S) : (a+k)(l+8(O)) Rss(S) (2.75)

Similarly, for DIA 2 (estimator in the loop)

v(s) : Hvr(S)R(s)
(2.76)

H : L(I+ATM)-IAT (2.77)
_r

am(O) (2.78)
ess = -"ss = - a+k+ka(O) rss

This latter result exhibits the undesirable "hang-off" when the estimator is

in the loop, e.g., DIA 2. This problem can be eliminated if the filter in

DIA 2 contains an integrator, e.g., if F(s) in (2.30) has the form,

fl s +f 2 (2.79)
F(s) - s(s+f3 )

To see this, consider the plant and controller of (2.29) with F(s) as in

(2.79), then

a
G = -

s

a
T = -- (2.80)

s+a
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-I S(S+f3)
L : (I_F) : (2.81)

s(s+f3) + fls + f2

fls + f2
M = LF = (2.82)

s(s+f3) + fls + f2

For DIA 2

-l
H = L(I + ATM) AT (2.83)
vr

and

limH :0
vr (2.84)

s_O

It then follows that e : O.
SS

Internal Model Principle and Structurally Robust Blocking Zeros:

The internal model principle states that asymptotic tracking and

dic:_urbance rejection in the presence of plant uncertainty can only be

achieved if the controlled system contains a replica (internal model) of the

commands and disturbance signal generators [18-20]. For example, tracking

constant commands and rejection of constant disturbances requires integrators

in the loop. The presence of the internal model creates zeros of transmission

in certain transfer functions. For instance, for command following, transmis-

sion zeros are created between the reference input and the tracking error at

the frequencies of the commanded signal. These zeros referred to as

"blocking" zeros, are also structurally robust, i.e., the locations of the

zeros are unaffected by parameter variations.

For sensor failure DIA systems, if the plant's steady-state output is to

be unaffected by a failure (represented by the bias b), then the transfer

function from b to u (and therefore y) must contain a structurally robust

blocking zero. This would happen if an internal model is present in the

filter. The following examples illustrates this.
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Example 2.1 SISO System with Unknown Measurement Bias:

Consider the SISO plant

a

Po(s) = s+a

with the filter containing the internal model

Plant:

(2.85)

= -ax + au

y = x

z=y÷b

A

Filter: x = -ax ÷ Kl(Z - z) ÷ au

A

b = K2(z - z)

Z = X ÷ b

Control law:

(2.86)

(2.87)

u = -K x
o

(2.88)

Then substitution of the control law in the system equations results in the

overall system equations from the bias to the control

m

x

b
-a-Kl-aK o -Kl Kl= -K2 -K2 K2

-aK 0 -a
o

x_ I K1

b I + K2

.xJ .o J

u = -[Ko 0 ] (2.89)
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For a linear tlme-lnvariant system of the form

x = Ax ÷ BU

y = Cx + Du
(2.9o)

the transmission zeros are defined as those frequencies at which the system

matrix (pencil)

[ ]sI-A I B

XZ(s) = ,',
-C : -D

I

loses rank [22].

(2.91)'

The zeros from b to u are given by

yz(S) = det

m

s+a+Kl+aK o K1 -K 1

K2 s+K 2 -K 2

aK 0 s÷a
o

K 0 0
o

n

K1

K2

0

0

- 0

= -KoK1s(s,a) (2.92)

i.e., there is a zero at the origin. Furthermore, this zero is structurally

robus!, i.e., its location does not change in spite of the parameter errors in

the system matrices. To see this, assume that the system matrices are modified

such that

Po (s) : _s+a+c (2.93)

where _ and B represent plant parameter variations of any size so long

as the closed-loop system remains stable.

The overall system equations from b to u are now given by
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R

X

b

_m

(-a-aKo-K l)

= -K2

-(a+B)K o

u = [-Ko 0 O]

yz(S) = det

The zeros are

-KI

-K2

0

K1

K2

-(a+_)

i x K1

I b + K2 b
i

!x o
L_-__ ----

s+a+aKo+K l

K2

(a+B)K
0

Kl

s+K2

0

_K1 I KI--[
-K2 J K_

s+a+c I 0
I

K 0
0

o I o
I

: -KiK2s(s-a-c )

- 0

(2.94)

(2.95)

which confirms the fact that the zero at s=O _s unaffected by parameter

variations hence the robustness property.

Example 2.2 Multlvariable System with Unknown Constant Measurement Bias:

Plant:

Filter:

Consider the general square multivariable system

x : Ax + Bu

y=Cx

Z =y÷b

x = Ax + Bu ÷ KI(Z-Z), y = Cx

z=y+b

b = Kz(Z-Z)

(2.96)

(2.9?)

(2.98)
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A

Control law: u = -K x
O (2.99)

w

! I

x I

Jl I

b t;

• I

X I

The overall system equations are

A-BKo-KIC -K 1

-K2C -K 2

-BK o 0

X

u = [-Ko 0 O]

KIC

K2C

A

_ m m

r x Kl
!

b + K2

x 0

The transmission zeros of the system are given by

(2.100)

yz(S) = det

w

sI-A+BKo+KIC K1 -KIC

K2C sI+K 2 -K2C

-B K 0 sI-A
0

-K 0 0
0

-K,

-K 2

0

0

: 0 (2.101)

which after elementary row and column operations is equivalent to

yz(S) = det

m

sI-A _K1 a I 0 ''Ii 1 i
i o I-K 0 I I 0

o I I i

0 0 -I sI-A I 0 '
I

I I- -

i o I sI'
0 -K

2

(2.102)

which shows the presence of blocking zeros at the origin. To see that these

transmission zeros are structurally robust, consider the parameter and

controller perturbations

= A + aA (2.103)

B:B+_B (2.104)
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Ko = Ko÷ &Ko (2.105)

K1 = K1 ÷ _K1 (2.lO6)

K2 = K2 + &K2

The transmission zeros of the perturbed system are given by

_z(S) =

m

sI-R -KI

-[ 0
0

0 0

0 -K'_

0 I 0

ol o

s_-_ I o

0 I sl
I

(2.107)

(2.108)

which confirms the fact that the transmission zeros at the origin are

structurally robust as they are not affected by plant parameter variations.

The above development can also be carried out for systems wi_h a non-zero

direct transmission term (O # O) and with more complicated dynamics for the

bias b. The conclusions would be the same.

2.3 SUMMARY

In thls chapter, we have discussed various sources of model uncertainty

and its representation. The effects of model uncertainty on stability and

performance was discussed for two generic configurations. New performance

robustness measures were introduced to determine tracking and disturbance

rejection performance robustness properties. The effects of modeling errors

on asymptotic tracking were discussed. It was shown that an internal model is

required in the filter to produce unbiased estimates.
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Ill. EFFECTOFMODELUNCERTAINTYONFAILUREDETECTION:
THETHRESHOLDSELECTOR

Oneof the most difficult problems in sensor failure DIA algorithm design

is the ability to evaluate analytically the DIA algorithm in the presence of
model error. In this section, for the first time, a unified framework which

allows for this analysis is presented. A new concept is introduced, referred

to as the threshold selector, which is a nonlinear inequality whose solution

defines the set of detectable sensor failure signals. The threshold selector

is consistent with the frequency domain model uncertainty description that has

been emphasized in this study. What follows is a heuristic discussion of

failure detection which leads to the notion of the threshold selector. For

illustrative purposes, the Focus will be on the innovations approach to

failure detection. As will be seen, the methodology is quite general and not

limited to just the innovations approach. The conventional technique of

selecting thresholds in innovations-based DIA filters has been based on

noise. In a previous study [g], constant thresholds were selected based on a

•easur_ of innova_:ons size obtained from a no Failure hypothesis filter.

However, _he current technique determines thresholds based on model error,

sensor noise, and class of Failures, as _ell as the speed of the DIA Filters.

The threshold selector inequality to be presented here represents a new

and innovative tool in the analysis and synthesis of DIA algorithms. In

particular, good estimates for the minimum threshold set are obtained in the

multivariable case. In this case, it is necessary to compute operator gains

dependent upon the norm measure used in detection. DIA designs, more sophis-

ticated than those illustrated here, can also be analyzed and synthesized

using the threshold selector inequality.

3.1 INNOVATIONS APPROACH TO FAILURE DETECTION

_any ;ensor Failure detection schemes (for example, see Refs. I, 8 and g)

have been based on determining the characteristics, such as the RMS value, of
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the innovations v(t), over a given Finite time interval t c[O, T]. In
this section, a Frameworkwill be presented within which it is possible to

evaluate directly the effect of model uncertainty on the ability to detect a

failure. The analysis presented also proves to be extremely valuable in the
selection of the DIA estimator.

The problem Formulation is as in Chapter II.

sequencemaybe expressed as

_(s) = Hvb(S)b(s) + Hvr(S)R(s)

From (2.24), the innovation

where Hvband H are dependent on the model uncertainty A, and fromvr

(2.25) and (2.26),

Hvr(S) = Hvb(S)a(s)T(s )

Define the bias b as

(3.1)

(3.2)

b = n + F (3.3)

where n is zero-mean sensor noise and f is a drift signal associated '_ith a

class of sensor Failures. In practice, the situation is that a known class of

failures is possible, and detection is limited by some bounded noise signal

and bounded model error. Let _n' _f' and _a denote, respectively,

the bounded sets of noise signals n, Failure signals f, and model errors

a. Let J(T) denote a measure of the innovation size on the interval

0 < t < T, where J(_) is given by

J(T) = llvJlT (3.4)

The (truncated) norm operation II.Sl is based on an RMS measure of the

innovations and will be defined precisely below. The norm in Eq. (3.4) may be

evaluated either in the time domain or Frequency domain using Parseval's

theorem [28]. Hence, the notation

J(_) = !I_(s)I) (3.5)
T

k
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denotes evaluation in the frequency domain. Substituting (3.2) into (3.4)
gives

J(_) = llHvb(S)(N(s) + F(s) + W(s)T(s)R(s))II (3.6)
T

With no model error, 8 = 0 and

_(S) = H b(S)(N(s ) + F(s)) (3.7)

Thus, a non-zero bias due to sensor failure is detectable in y through the

dynamics of Hvb given by (2.26). Under mild constraints, it is possible

to detect the presence of failure for relatively small bias. The only limit

is due to noise levels in the sensor. However, the model error effectively

raises the detection threshold (3.6). It was Found in previous applications

of sensor failure DIA logic to the turbofan engine problem [8, 9] that the

model error considerably dominates any sensor noise level and is the primary

cause of false alarms and misses. What is sought is a means to detect the

presence of failure bias b despite model uncertainty A. More

specifically, what are the conditions of the transfer function matrices

H b and H r in (3.1) such that the _bility to detect a Failure is

maximized? Further, what is the most sensitive detection scheme for a known

class of failures?

3.1.1 False Alarm

A major requirement on detection is to reduce or prevent false alarms.

Thus, in the absence of any failure signal, J(T) should be less than a

threshold value, Jth" Setting f = 0 in (3.6) gives*

Jth(T) = sup llHvb(S)(N(s) + W(s)T(s)R(s))II (3.8)
T

For the sake of brevity, the notation sup(-)

x

for all x = n, f, A. Likewise, sup(.) means

×,y

is used in place of sup(.)
xc9

x
sup(,)

XC_x,Y¢_ x
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where sup(-) denote the supremum or the least upper bound. Note that the

threshold function Is dependent upon the known reference command r as well

as bounds on the noise and model errors. In fact, with no model errors,

a = 0 and the threshold is determined strictly by the worst-case noise

level, i.e.,

3th(T) = sup IIHvb(S)N(s)IIT (3.9)
n

3.1.2 The Threshold Selector

Setting a threshold to eliminate false alarms due to sensor noise and

model error will cause the detector to miss certain Failures. The question

is: What is the minimum detectable Failure? In other words, find the

threshold failure set. Denote this set by _f, which is defined as

those fc_f such that

inf J(T) > Jth(T)
A,n,f

(3.10)

where inf(.) denotes the infinum or the greatest lower bound. Substitut-

ing (3.6) and (3.8) into the above gives

inf

A,n,f
11Hvb(S)(N(s) + F(s) + A(s)T(s)R(s), > sup II_b (s)(N(s) + a(s)T(s)R(s)II

A,n T

(3.11)

If we decompose the innovations into components due to the noise, failure, and

error model

v(s) = Vn(S) + vf(s) + va(s) (3.12)

then (3.11) may be rewritten as

inf fly
n

A,n,f
+ v.1. + vAIIT > sup IlVn + vAIIT (3.13)

A,n

Since this inequality generates the minimum threshold set, it is referred to

as the threshold selector. An estimate of the smallest size of Failure f

which is detectable can now be calculated.
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Ifl

Theorem 3.1: An estimate of the size of minimum detectable failure

is given by

Ifl _ 2 Oth(T)/B(T) (3.14)

with the threshold as

Oth(T) __a(max _ [L(j_)]) n + 61rl_ L(QTI LT)(T)] (3.15)

and

B(t) _ ;[QTIL(T - tf)] (3.16)

A
Irl = norm of the reference input signal

A
Ill : norm of the failure signal

A
Q_k = operator gains which are functions of type of failure and

reference signals; k : i,j

A
= upper bound on mode] error (constant)

tf _ failure time

A
= size of detection window

_ bound on RMS sensor noise

Proof: A conservative estimate of the threshold set can be Found from

the inequality:

inf IIvf(S)ll T
F,A

since (3.17) implies (3.13).

(3.17) as

> 2 sup llVn(S) ÷ vA(S)IIT (3.17)
A,n

This can be seen as follows. We may rewrite
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,,,n(S ,,a(s)" >
(3.18)

and, since

sup JlVn(S) * va(s) II> inf ,Vn(S)+ _a(s),
a,n f,a

(3.]9)

(3.1B) may be written as

inf llvf(s)ll - inf llVn(S) + va(S)ll > sup llVn(S) ÷ va(s)llT T T
f,A 8,n A,n

(3.20)

However,

llvf(s) + Vn(S) + VA(S)II_ > lllvf(S)llT- llVn(S) + _a(s),TI

= llvf(s)tl_-llVn(S) + _A(S)IIT
(3.21)

as long as

,_f(s),__ > ,_ (s) _ _ (s),n 8
(3.22)

SuDstituting (3.21) into (3.20), we have

inf It_n(S) + _f(s) + va(S)il
A,n,f

which is (3.13).

> sup 11Vn(S) + va(s)il
A,n

(3.23)

In order to utilize (3.13) or (3.14), it is necessary to specify the

detection measure if.Jr, and the sets _f _n and _ . Suppose thatT ' ' A

detection is based on the root mean square (RMS) measure,

llxll = (If0T 2dt)l
- Ix(t) l /2

T T
(3.24)

where Ix(t)] Is the Euclidean norm of x(t), i.e.,

I/2
Ix(t) l = (x'(t)x(t)) (3.25)
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Furthermore, let

9f = {flf(t) = fol(t - tf), IfoI > f, tfc[O, T]}* i3.26)

= {nl IlnllT < n }
n (3.27)

9a : {al;[a(j_)] _ a(_), _&o} (3.28)

In other words, the sensor failure signal f occurs at some time tfc[O,T];

and is represented by an abrupt shift in bias; the noise signal n is

arbitrary, except that it is bounded In norm (3.27); and the model error a

is bounded as described in (3.28). Note that by allowing the noise to be in

the set 9 , it is not possible to distinguish at each instant of time n
n

Cgn from f cgf. Therefore, it is necessary to view the innovations

over a (moving) time window T, e.g., as in (3.24). One can now calculate

an estimate of the smallest f in (3.26) by evaluating (3.13) over (3.17).

The mathematical machinery for this calculation is available [14-16], but

requires the introduction of the Following Jefinitions.

Let H denote an operator with proper rational transfer function matrix

H(s). Let rk denote the linear operator defined by

k= 0

k = 1,2 ....(rkH)(t) = _,-1 _ H(s) ,
s

(3.29)

-I
where _ [.] is the inverse Laplace transform operator. Thus,

corresponding to His), (roH)(t) is the impulse response matrix,

(rIH)(t) is the step response matrix, and so on. It is also convenient

to define the matrix operator,

* l(t) is the unit step function, i.e., lit ) = O, t < O; l(t) = I, t _ O.
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)(Q_kH)(T) : T [(rkH)(t)],[(rkH)(t)]dt I/2 (3.30)

With definitions (3.29) and (3.30), one can now calculate (3.17). In

order to facilitate the presentation here, we make the simplifying assumption

that the model error a is constant (e.g., DC model mlsmatch only) and is

sufficiently small so that

, -I -l
(I + AT) - I, (I + ATM) - I

or equivalently*

H b(S) = L(s)

From (3.17) it then follows that

inf,L(s)F(s), > 2 sup llL(s)N(s) + L(s)a(s)T(s)R(s),
T T

f,a a,n

We will now evaluate the above norms in the time domain. Using the relations

[28]

(3.31)

(3.32)

(3.33)

,I¢A,: )=I;JA, (3.34)

,ABfl S flAil tf8, (3.35)

and the fact that

2(A) < ,Axl.___ZI< ;(A) (3.36)
-- Ilxll

the left-hand side of (3.33) may be replaced by

Ifl _ [QTI(L(_ - tf))] (3.37)

where the inf(.) has been replaced by the lower singular value from (3.36)

and (3.26) was substituted for f{t). We then have that

* Note that without this simplification, one has to deal with (3.17) directly
which is rather awkward.
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Ifl 2[Q_I(L(T-tf))] > 2 sup llL(s)N(s) ÷ L(s)W(s)T(s)R(s)II
A,n

(3.38)

Now if we ensure that

Ill __[0 ](L(T-tf)] > 2 Sup(IIL(s)II_HN(s)H
+ IIA(S)H IIL(s)T(s)R(s)II

(3.39)

then using (3.35) and the fact that

IIA+BII < IIAII + IIBII (3.40)
w

(3.37) follows from (3.38) since the right-hand side of (3.38) is smaller than

(3.38). Furthermore, if we use the identity [28]

nail2 = _(a) = max IA(j=)I (3.41)
t_

then the right-hand side of (3.39) may be written using (3.27), (3.41),

(3.28), and (3.30) as

2(max IL(j_)I _ + 61rI_[QTI(LT)(_)]) (3.42)
W

Substituting (3.42) for the right-hand side of (3.39) we now have

IFI2[Q iL(T-tf) ] > 2 (max= IL(j_)I n ÷ alrI_[Q_I(LT)(_)])

(3.43)

where we have used the assumption that

r(t) = r l(t) (3.44)

If we define the threshold as

Jth(T) _ max IL(j=)In + 61rl _[QTI(LT)(T)]
(3.45)

and

B(T) _ 0 l(L(T-tf))
(3.46)

then (3.43) may be written as
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2Jth (_)
(3.4?}

which is the desired relation (3.14). Q.E.D.

Figure 3.1 shows a conceptual plot of Ifl vs. T. Note that in the

presence of noise, the detection window must be large enough to separate noise
\

from the bias shift due to sensor failure. Further, there is a detection

window T, dependent on tf, such that Ifl is a minimum. But,

tf is not known; consequently, one can only evaluate the effect of window

selection. Figure 3.1 is also useful in evaluating the filter dynamics. If

the dynamics of the filter are fast, there is a sharper, lower threshold than

when the filter is slow. Figure 3.1 illustrates this critical trade-off in

filter design, i.e., threshold vs. detection window. Figure 3.2 shows a

typical plot of threshold Jth vs. T. In Theorem 3.1, we assumed that

the reference input signal was a step. However, other reference input signals

may be used such as a ramp input signal, as done in the examples below.

Example 3.1: Consider the following scalar example, where

a
Po(s) = --s+a' (3.48)

with proportional plus integral control

a
G (s) = l +- (3.49)
c s

and filter dynamics,

k
F(s) = -- (3.50)

s+a

then from (2.27),

G(s) C S(s) : _ T(s) =: s' s+a' s+a (3.51)

s+a k
L(s) : _ M(s) : " (3 52)s_a+k ' s+a+k
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_f(_)

_RESNOLD _...

0

I _'_ STIMATOR

' KJ 1
_-----_r- -- - -4-

I

t? 'I '2

f(T) smallest size of detectable failure

tf: time failure occurs

3: length of detection window

Figure 3.1 Threshold Selector: Minimum Detectable Bias Shift (f) vs.
Detection Window (T)
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THRESHOLD

Jth (")

J: Threshold

Jth: Threshold for large detection window

w

n: RMS noise

T: length of moving detection window

Figure 3.2 Threshold vs. Detection Window
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' and

a
L(s)T(s) - s+a+k (3.53)

Now

and

LT(t) : _-l[ a
rI s(s+a+k){

: a--_(l- e-(a+k)t) (3.54)

L(t) = _],-IJ s+a
rI [s(s+a+k)

a k -(a÷k)t
- a+k + a-_ e (3.55)

Therefore,

I)O l LT(T) = _ a__( l _ e-(a+k)t) 2dt I/2 (3.56)

T-t

(I _0 f[ a K e-(a+k)t]2dt)I/2OTl L(T - tf) = _ a-_ + a-_ (3.57)

and after the integrations have been performed, we obtain

I ]QTI LT(T)= a -2(a÷k)_ a+k)T I/2
2(a+k) 3T [2(a+k)_ - 3 - e + 4e -( ]

(3.58)

OTIL(_-tf) : I 1 [2a2(a+k)(T_tf) _ k2e-2(a+k)(T-tf)
2T(a+k) 3

2 I I/2
- 4ake-(a+k)(T-tf ) + k ÷ 4ak] i

(3.59)
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Since the singular value of a scalar quantity is simply its absolute value,

then
!

_[(QT]LT)(_)] = I(QT] LT)(T)I (3.60)

and

_[(QTI L) (T-tf)] : I(QT]L)(T-tf)l (3.61)

Also we have that

_(L(j_)) = _" a2 ÷ 2
(a+k)2+ _2 (3.62)

and

max _[L(J_)] = l since a > 0 and k > 0 (3.63)

Finally, 'we obtain For the threshold

3th(T) = n • alrl I(QTI LT)(_)I (3.64)

or

Jth(_) = n + 61rl •

and

I[2 ] Ia -2(a+k) T a+k) _] I/2

2(a+k) 3T [2(a+k)T - 3 - e ÷ 4e-(

(3.65)

8(T) = I(Q L)(T)I
T!

(3.66)
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or

i 2T(a+k)

2 -2(a+k)(T-tf)
3 [2a2(a+k)(T-tf ) - K e

-(a+k)(T-tf) K2 }i121- 4aKe + + 4aK] (3.67)

The closed-form solution of threshold as a function of the detection window is

given by

2 Jth(T)

: B(-TT)-
(3.68)

In the limit as _ _ ®

I aJth(®) _ n + 61rl (a+k) = constant. (3.69)

a (3.70)
B(®) _ (a+k)

and

f(_) _ 2[nl L_-_)-I+a 61rl] : constant. (3.71)

For the case of soft failures, one can derive similar closed-form

expressions. For example, soft failures with a_ramp reference input r

- I { a2 3 a2
Jth(_) = n + 61rl L a 2 -2(a+k)_

T 2(a+k) 5 e + + )4(a+k) 2 3 (a+k

2 2 2 -(a+k)T
2a2 e-(a+k)T a T 2a e

5 3 5 ((a+k)_+l)
(a+k) (a+k) (a+k)

2(a+k) 5

I/2

(3.72)
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(](T) = I 1 [ a2 (_-tf)
T (a+k) 2 3

K2 -2(a+k) (_-tf)
e

5
2(a+k)

_r
K2

(a+k)4 (T-tf) +

aK

(a+k)3 (T-tf)2 +

2K2

(a+k) 5

-(a+k)(T-tf)
e

÷

2aK -(a+k)(T-tf)
e

(a+k) 5
((a+k)(T-tf) + l)

3K2 2aK Ill/2
(2(a+k) 5 (a+k) 5

(3.73)

Figure 3.3 shows the results for the hard failure with two different

m

estimator speeds. The parameters being used are a=l, tf=.001, c=.01,

a=.05, y=l, K=2 (slow estimator), and K=lO (fast estimator). This shows

that the threshold selector is also useful in evaluating the filter dynamics.

If the dynamics of the filter are fast, there is a sharper minimum in f and

generally lower thresholds than when the filter is slow.

The results for soft failures with the same parameters are shown in

Figure 3.4. Note that the behavior is quite different From before. For hard

failures, there is a single sharp minimum in f which corresponds to a very

small detection window, For soft failures, f has a hyperbolic type

behavior. There is not a unique minimum, and a larger detection window

compared to the hard failure case needs to be selected. These results are

quite reasonable as they agree with intuition.

3.1.3 A Computer-Aided Desiqn Approach for Computinq Optimal Thresholds

It was anticipated that a closed-form solution for the multivariable case

was not possible hence a computer-aided design (CAD) approach was also

developed for the threshold selector analysis. The basic operations involved

in the computation of the thresholds are calculations of frequency response

characteristics of L and transient response matrices of L and LT dynamic

systems. Note that the expression for L is
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-l
L(s) = (I + F(s))

which is simply the inverse return difference matrix of the filter. To

compute the transient response of systems with transfer functions L(s) and

L(s)T(s), a (minimal) state-space realization of these systems is required.

In the single-input/single-output (SISO) case, a minimal state-space

realization for L(s) denoted by (Ar_ , Br_, Cry, Dry) can be

written down by inspection. Similarly, LT is a dynamic system whose transfer

function involves products of certain inverse return matrices, etc. as shown

in Figure 3.5. To obtain a minimal realization (Ar, Br, Cr, Dr) for

this system, the block diagram manipulation facility of CTRL-C [21] called

INTERC was used. To use this tool, the different blocks in the system block

diagram are numbered as shown in Figure 3.5. The various interconnections are

then specified. The procedure yields a non-minimal realization for the system

of order n = 5 in this case. The procedure MINREAL* is then utilized to
s

obtain a minimal realization for the system which is of order n : l and
s

agrees with hand calculations. Suppose h(t) is the impulse response of

L(s)T(s) system corresponding to the state-space realization (Ar, Br,

C , O) _nd hl(t) is the impulse response of L(s) systemr r

corresponding to the state-space realization (Ar_, Br_, Cry,

0 ). Then the threshold is given by
r_

2(n + 61rl Q_I(LT))
f , (3.74)

QTI(L(T-tf))

T t t

0 0 0
f : (3.75)

,g(T [ hl(ta)dt3]'[ hl(t4)dt4 ]dt)l/2
0 0

*MINREAL uses the staircase algorithm to remove uncontrollable and/or

unobservable modes.
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where

t

_o h(.)d(.) = step response of (A , Br, Cr, Dr)r
(3.76)

and

t

L hl(.)d(. ) = step response of (Ar_, Br_, Cry, Dr9.)
(3.77)

A procedure was then written in CTRL-C to calculate the threshold curve for

Example 3.1. Figure 3.6 shows the plots of the thresholds generated by CTRL-C

both for the closed form and the CAD technique using the same values of

parameters. The integration step for the CAD plot is .OOl sec. The slight

discrepancy in the two curves would disappear if smaller integration steps are

used. Figure 3.7 shows the plots of threshold selector for a slow (a=l,k=l)

and a fast (a=l,k=lO) estimator.

Example 3.2: Multivariable Control of a Turbofan Engine

To illustrate the idea of threshold selector in the multivariable case, a

model of a turbofan engine and its multivariable control at sea level static

conditions with a power lever angle (PLA) of 36 ° was chosen [12].

The states of the system are

Xl = Fan Speed, SNFAN (N]) - rpm

X2 = Compressor Speed, SNCOM (N2) - rpm

X3 = Burner Exit Slow Response Temperature,

Tt41o - oR

X4 = Fan Turbine Inlet Slow Response Temperature,

Tt4.51o - °R

The engine controls are:

U1 = Main Burner Fuel Flow, WFMB - Ib/hr

U2 = Nozzle Jet Area, Aj - ft2
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U3 =

U4=

U5=

Fan Guide VaneAngle, FGV- deg

CompressorStator Vane Angle, SVA- deg

CompressorBleed Flow, BLC- %

and the engine outputs are

Yl = Fan Speed, SNFAN(Nl) - rpm

Y2 = CompressorSpeed, SNCOM(N2) - rpm

Y3 = Burner Pressure, PT4- psia

Y4 = AugmentorPressure, PT6- psia

Y5 = Fan Turbine Inlet Temperature, FTIT - °R

The normalized system matrices for the example are shownin Table 3.1. The

open loop poles are at -3.1616, -2.880?, -.7036 and -I.0865. There are two

transmission zeros at -I.7294 and -.6456 and were computedusing the algorithm

in Ref. 22. It is interesting that one of the transmission zeros of the

system is at -.6456 which indicates why it is not possible to move the slow

temperature pole at -.?036 very far. The multivariable control law is
proportional plus integral [6,7]

Gc(S) = Cp ÷ !s CI (3.78)

where the (normalized) proportional gain matrix (Cp) and the integral galn
matrix (CI) are as shownin Table 3.2. The (normalized) filter gain matrix

(K) is as shownin Table 3.2 and corresponds to filter poles at

-II.2034, -8.07?7, -2.0051, -.6817

The transfer function matrices of interest are given by

-l
Nominal Plant: Po(S) = C(sI-A) 8 + D (3.79)

!
Controller: Gc(S) = Cp + s CI (3.BO)
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Table 3.1

System Matrices for the Example

A

-3.9180D+00

-1.8061D-01

-1,3190D-01

-3.8191D-01

4.1886D+00

-2.1480D+00

-2.4056D-01

-I.0501D+00

-4.1148D-02

1.5853D-01

-6.6630D-01

-6.7400D-02

1.2279D-01

6.6994D-04

2.3770D-04

-2.0000D+O0

B _

5.1991D-01

3.6266D-01

2.8427D-01

9.3743D-01

1.1942D+00

I.O836D-01

3.3231D-02

7.3072D-02

2.1974D-01

7.2562D-03

5.7770D-03

1.7417D-02

-2.4990D-02

-1.2133D-O2

5.7672D-03

2.0418D-O2

-1.7226D-02

-7.2114D-03

1.6319D-03

1.0634D-01

C __

2.2043D+01

O.0000D+O0

3.7700D+00

8.O543D+00

-2.9070D+00

0.0000D+OO

2.7339D+01

1.0341D+01

3.1436D-O1

-7.9884D+00

O.0000D+O0

0.0000D+00

-7.6298D-03

-6,6634D-O2

-5.1265D-01

O.O000D+O0

O.0000D+O0

-4.3237D-03

-3.7135D-02

2.6855D-03

D _

0.0000D+O0

O.000OD+O0

1.0036D+00

9,7674D-01

7.1316D+00

0.O00OD+OO

0.O000D+00

-8.2350D-01

-5.7450D+00

5.5560D-01

O.0000D+O0

O.0000D+00

-1.5200D-01

-3.8500D-01

1,3247D-01

0.O000D+O0

0.O000D+O0

-5.6233D-02

9.5762D-03

1.5533D-01

0.O000D+00

O.O000D+O0

-5.8600D-02

-2.2963D-02

4.8290D-02
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Proportional

Table 3.2

Gain Matrix (Cp), Integral
Filter Gain Matrix (K)

Gain Matrix (Cl),

K

2.3692D-01

6.8145D-02

2.3950D-02

2.0241D-O2

1.9395D-01

2.8495D-01

3.578OD-02

6.0917D-02

1.0177D-02

5.1618D-03

2.3172D-04

-5.O971D-04

3.7510D-04

3.6090D-05

2.1026D-05

-4.4286D-06

-1.6788D-02

-9.9733D-03

5.0178D-04

1.9605D-03

Cp

-4,6597D-02

-2.2281D-02

-8.5667D-02

9.4676D-02

8.0500D-01

-2.2423D-01

-4.5208D-07

0.0000D+O0

-2.9942D-01

2.3320D+00

-5.3984D-O1

O.OO00D+00

0.0000D+00

O.0000D+00

7.5286D+00

-2.5951D-02

3.5198D-02

4.1154D-02

5.4087D-02

O,O000D+O0

O.O000D+O0

O.0000D+O0

O.0000D+O0

O.0000D+00

O.O000D+O0

Cl

-I.0062D+00

-2.3333D-01

0.O000D+O0

O.O000D+O0

O.O000D+OO

O.O000D+OO

O.0000D+O0

O.0000D+O0

O.000OD+O0

O.OO00D+O0

O.OO00D+O0

O.O000D+O0

O.0000D+O0

O.OOOOD+00

O.O00OD+OO

-1.7247D-02

2.9998D-02

O.O000D+00

O.0000D+00

O.0000D+O0

O.0000D+00

O.OOOOD+O0

O.0000D+00

O.0000D+O0

O.0000D+00
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Filter:

From (2.26)

F(s) : C(sl-A)-IK

G(s) = P (s) Gc(S)o

1 c
- [C(sI-A)-lB + D][Cp + s

s(s) --[I + G(s)]

i]

(3.81)

(3.82)

(3.83)

and

-l
T(s) - [I + G(s)] G(s)

L(s) = [I ÷ C(sI-A)-IK] -l

M(s) : [I + C(sI-A)-IK] -I F(s)

(3.84)

(3.85)

(3.86)

max _[L(J_)] : II.9122 (3.87)

Again it is relatively simple to obtain a minimal realization of L(s).

state-space matrices are denoted by (Art ' Brt , Crt , Drt ) and are as in

Table 3.3. The poles are at

The

-11.2034, -8.077, -2.0051, -.6817

and the transmission zeros are at

-3.1616, -.7036, -2.880?, -I.9865

The block diagram of L(s)T(s) Is as shown In Figure 3.8. INTERC was

used to obtain a non-minimal realization of the system. Note that for the

purposes of defining the output to CTRL-C, it is necessary to introduce a

fictitious block (6) in the diagram. The order of the non-minimal realization

is n = 27. MINREAL was used to yield a minimal realization of order
s

ns = lO*. The final results for (Ar, Br, Cr, Dr.) are displayed in Table 3.4.
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Table 3.3

Associated State-Space Matrices (Ar_, Br_ , Crt , Dr_ )

ARL

-2.0003D+OO

-7.2277D-O3

-1.2263D-O1

-1.5242D-03

5.9409D-02

-6.6573D-01

-5.0294D-02

1.5345D-01

8.2386D-01

-6.5511D-01

-9.2306D+00

-1.7314D+00

2.7009D+00

-1.2030D+00

-1.3534D+00

-I.0071D+OI

BRL

-2.0366D-02

2.3844D-02

2.3692D-O1

6.8145D-02

-6.1104D-02

3.5460D-02

1.9395D-01

2.8495D-01

5.0848D-04

2.3439D-04

1.0177D-02

5.1618D-03

4.3184D-06

2.1049D-05

3.7510D-04

3.6090D-05

-1.9631D-03

4.9150D-04

-1.6788D-02

-9.9733D-03

CRL

O.O000D+00

2.2204D-16

4.3636D-03

3.7484D-02

-8.3267D-17

1.3878D-16

3.3307D-16

-7.6070D-03

-6.6438D-02

-5.1265D-01

2.2043D+01

2.2204D-16

3.7700D+00

8.0543D+00

-2.9070D+00

6.6613D-16

2.7339D+01

1.0341D+01

3.1436D-01

-7.9884D+OO

DRL

-i. O. O. O. O.

O. -I. O. O. O.

O. O. -I. O. O.

O. O. O. -i. O,

0 " 0 I 0 . 0 l --l .
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The poles of Ar are

-11.2034 + O.O000i

-8.0777 + O.O000i
-4.7046 - O.O000i

-2.6196 + 1.8997i

2.7863 + O.O000i

-2.0051 + O.O000i

-0.734? + O.O000i
-0.6B17 ÷ O.O000i

-0.I034 ÷ O.O000i

and the transmission zeros are

-1.9865, -.7036, -3.1616, -2.8807

which are as expected.

The (QTI)LT Is then of the form

(3.88)

where h(-) is the impulse response matrix of the (Ar, Br, Cr,

D ) system and its (i j)-th element is the response of the i-th
r

component of the output to an impulse applied at the j-th component of the

input while all other components of the input are zero and the initial state

is zero. Note that an expression such as:

t

J_o h(tl) dtl = step response matrix
(3.89)

* This is a numerically delicate problem.

chosen to be I00 c where

C D 2

The tolerance for MINREAL should be

is the machine precision.
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Table 3.4

Final Results for (A r, Br, C r, D r)

AN I

Starting at
-1.8833D+00

3 0702D-O2 -i.

3 0137D-01 I.

-i 6443D-01 -2.

-i 3275D-01 8.

-3 1541D-02 -i.

00000D+OO i.

0 0000D+O0 O.

0 O00OD+O0 O.

0 O000D+OO O.

row

2.2461D-02

9773D+00

1797D-02

1904D-01

5894D-03

1947D-02

2095D-01

0000D+O0

O000D+O0

O000D+O0

i columns 1 thru

4 1244D-01

5 3534D-02

-7 7122D-01

7 2472D-02

-5 1391D-02

-3 1920D-02

-i 6299D-02

1 4931D-01

0 0000D+O0

0 O000D+O0

Starting at
4.7572D-01

6.1265D-01

-2.1959D+00

-2.7577D+00

-i 1208D+01

-4.9271D+00

-9 4908D+00

-4 2548D+00

6,6487D-01

-I 2398D+01

1.7422D+00

-1.5215D+00

-1.3057D+00

6.3804D-01

1.9845D+00

1.3970D+00

4.9505D-02

-8.4370D+00

-6.2387D-01

3.6584D+00

row I columns 7 thru

2 IIOOD+00

-9 IIISD-01

-2 2261D+O0

-2 9244D+00

-6 1724D+00

-i 6149D+00

-6 5492D+00

-I 4728D+01

-6 3950D+00

-i 6509D-01

6

-9.7421D-02

-1.2298D-01

2.5823D-02

-6.8127D-01

3.4825D-04

-2.5310D-02

-4.6428D-02

1.8504D-02

1.5650D-01

O.O000D+O0

I0

4 8148D-01

I 1621D+00

-5 5108D-01

-7 6130D-01

-I 0806D+00

-i 3658D+O0

-3 6488D-O1

-6 2005D-O1

1 2374D-01

-6 3510D+00

8.6466D-02

-1.4802D-01

8.9131D-01

1.8765D+00

4.0643D-01

2.0529D+00

3.1668D-01

1.4743D+00

-7.9998D-01

1.1380D+01

6 8098D-04

4 3156D-02

1 5985D-01

3 0526D-01

-6 3688D-01

4 4477D-02

7 7116D-01

1 9028D-O1

1 4590D-01

2 1815D+00

BR

I

3

-6

-I

-2

-i

-5.

-[.

5.

-6.

2913D-02

52!6D-02

2897D-02

1748D-01

6848D-01

8192D-01

3986D-02

3163D-01

2728D-02

2446D-01

-3 5065D-03

-3 5419D-03

5 7229D-03

-2 7295D-02

1 7852D-02

-i 4634D-03

-4 5738D-02

-5 5903D-04

-5 1607D-02

-7 4094D-03

6.7581D-02

9.7594D-02

-9.2170D-03

-2.5362D-02

5.285OD-02

-1.2483D-03

-I.1493D-01

6.5713D-03

-1.2889D-01

-2.7436D-02

-9.3985D-03

-1.3254D-02

1.8487D-03

-5.6664D-03

-2.0758D-02

1.4683D-02

2.1870D-02

-4.2030D-03

8.8618D-03

1,8488D-04

0 O000D+O0

0 O000D+O0

0 0000D+00

0 0000D+O0

0 0000D+O0

0 0000D+O0

0.0000D+O0

0.0000D+O0

0.O000D+OO

O.O000D+O0
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Table 3.4 (Continued)

CR

Starting at row i columns i thru 6
1.9429D-16 -3.8858D-16 -I,1796D-16 -3,6082D-16

-5.0220D-16 -3.4001D-16 -1.9663D-15 -1.3704D-16

-6.8955D-17 -9.3675D-17 -2.6877D-16 -1.7781D-17

1.4572D-16 -3.1919D-16 -2,2291D-16 -1.7347D-16

1.3878D-16 2.7756D-16 2.6472D-15 -4.7184D-16

Starting at row I columns 7 thru I0
-3.7131D+01 -3.0531D-16 -8.8840D+00 0.O000D+O0

9.5083D+00 -2.3928D+01 -3.9740D+01 1.5959D-16

f2.7291D+O0 -I.0432D+01 -2.3954D+00 1.0780D+00

-1.5132D+O1 -5.4949D-01 4.9940D+00 -2.7756D-17

-3.3307D-16 2.3384D-15 7.6032D+01 -6.9389D-17

4.4409D-16

-9.0206D-16

-5.8981D-17

1.6653D-16

6.1062D-16

2.2204D-16

-6.9389D-18

1.0446D+00

6.8199D+00

-1.6653D-16

DR

0.00OOD+00

O.0000D+00

3.7478D-02

-9.9875D-02

1.8695D-01

0.0000D+O0

O.O000D+00

1.6983D-01

1.2594D-01

9.2186D-01

O.0000D+O0

O.0000D+O0

4.8632D-01

2.8937D-01

1.7470D+00

O.0000D+O0

O.0000D+O0

2.6586D-02

1.8044D-01

3.1605D-02

0.0000D+00

0.0000D+00

O.0000D+00

0.0000D+00

O.O000D+O0
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is a step response matrix, where the (l,j)-th element of it is the response

at time t of the i-th component of the output when the j-th component of

the input is a step function while all other components of the input are zero

and the Initlal state is the zero state. In this case the step response

matrix is a 5x5 matrix. Slmilar statements apply to (QTI)L operator.

We finally compute the multlvariable threshold as

2Jth(T)

f(_) - B(_) (3.90)

where

Jth(T) : (max _[L(j_)])n ÷ 6]rI_[(QTILT)(T)]
W

8(T) = o_[(OtiL)(_ - tf)]

(3.9])

(3.92)

m

llnli < n (3.93)
T

;(a(j_)) < & (3.94)

The threshold selector results for the hard failure case are as shown In

Figure 3.9. Note the similarity with the scalar case. The results for the

soft Failure case are as shown in Figure 3.10.

3.1.4 Summary

This chapter has discussed the effect of model error on detection. An

innovative Framework was developed to determine the effect of model error on

sensor failure DIA algorithms analytically. A new concept ca]led threshold

selector was introduced. The threshold selector analysis allows determination

of optimal threshold and size of smallest detectable failure as a function of

model error bound, noise, variance, speed of the filter, class of reference
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input signal, and class of failure signal. The threshold selector constitutes
a powerful design aid and allows one to arrive at a proper balance between
robustness and DIA sensitivity. The analysis in this chapter can be extended

to isolation and accommodationproblems, as well as other DIA designs than
those d scussed here.
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IV. ROBUSTFILTERDESIGNFORDIA

This chapter discusses the design of robust filters for use as part of a
sensor failure DIA algorithm. The robustness of the filter is due to

introduction of an internal model as well as frequency-shaping of the LQGcost

functional. The necessity of the internal model was discussed in Chapter II
(see Section 2.2.3). Recall that the presence of an internal model results in

asymptotically unbiased filter estimates. The internal model also provides

robustness with respect to parameter perturbations. However, since other

sources of model uncertainty are present (see Chapters I and If), the filter

maybe mademore robust by frequency shaping of the LQGcost Functional. This
is a result of taking the boundon model error into account. The concepts are
applied to a multlvariable turbofan engine example.

4.1 PROBLEMFORMULATION

A filter maybe maderobust by introduction of an internal model and by

frequency shapinq. The internal model provides robustness with respect to

parameter perturbations and results in asymptotically unbiased estimates. The

filter may be made more robust by adding dynamics to the filter to compensate

For other types of modeling uncertainty. This can be done in a formal way by

replacing the constant weighting matrices in a standard LQG cost Functional

with weighting matrices which are functions of frequency. This is referred to

as frequency shaping. The weighting matrices are chosen to reflect model

uncertainty. For example, if there is unmodeled high-frequency dynamics, the

weighting matrices may be chosen to be constant over the Frequency range where

the system model is known accurately and increase as a function of frequency

in the frequency range where the model is less accurate. This section

discusses the design of robust Filters for sensor failure DIA which employ

both an internal model and frequency shaping.

94



4.1.1 Filter with Internal Model

The internal model principle and its application to robust filter design

was discussed in Section 2.2.3. It was shown that the internal model is

necessary to provide asymptotically unbiased estimates and robustness with

respect to Parameter perturbations. For a system with unknown constant

measurement biases, an internal model (integrators) may be introduced by state

augmentation:

I IIA°filll

0 j 0
,_ ,. t

Z = [C I] + Du

where KP and KI

IIIKPI
0

are the proportional and integral estimator gains.

(4.2)

4.1.2 Filter Desig.n with Frequency ShaPing

Consider the system described by:

state-

measurement:

where w and v

x = Ax + Bu , BlW

z = Cx + Du + v

are independent, zero-mean, white Gausslan process and

(4.3)

(4.4)

measurement noise processes.

the form

The standard Kalman filter for this system is of

x = Ax + Bu + K(z - Du - Cx)

where K is the Kalman filter gain. We desire to find a filter which

minimizes the performance index,

(4.5)
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oj = _ {(z - Cx) T R-l(z - Cx) + wT o-lw} dt

1 _0 Q-I vT R-I_ = _ {wT w + v} dt (4.6)

In this cost function, Q and R are constant matrices independent of

frequency. Using Parseval's theorem, the performance index in (4.4) can be

transferred to the frequency domain

j_l /®2_ {W*(j_) Q-Iw(j_) + V*(J_) R-Iv(jw)} d_ (4.7)

Note that the two terms in the above integrand have the constant weighting at

all frequencies. However, the model may be well known within a certain

frequency range and not known accurately outside that frequency range. It

would then seem desirable to have weighting matrices which are functions of

frequency and be able to reduce the filter gain outside model bandwidth to

reduce sensitivity and increase performance of the filter. It is possible to

consider making Q and R functions of frequency

_(_l /_2_ {W*(jw) Q-I(2) W (j(_) _- V*(j_) R-I(_ 2) V(j(_)} d(_ (4.8)

that

A sufficient condition for the existence of a Filter minimizing (4.8) is
2

Q(j_) and R(J_) be positive semi-definite matrices in _ .

The problem as posed in (4.8) can be converted to a standard LQG problem

as shown below. One can treat w and v as colored noise sources generated

by shaping filters of the form

W(j,_) = Ql/2(jw) W'(j_) (4.9)

m

v(j_) : RI/2(j_) V (j_) (4.10)

where W' and V' are white noise processes. Ql/2 and RI/2

roots of Q and R such that

are square
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Q(Jw) = ol/2(jw) [Ql/2(Jw)]* (4.11)

R(jw) : Rl/2(jw) [Rl/2(jw)] * (4.12)

where Ql/2(j_) and Rl/2(jw) are rational functions of jw.

In sensor failure DIA, the primary cause for the use of frequency-shaping

is unmodeled dynamics. In our application to the engine problem, Q is taken

to be constant (i.e., independent of frequency) and R is chosen as

r2 (J + rI)

= -- , rI > r2 (4.13)
R rl (w2 + r2)

(see Example 4.1). Note that strictly proper transfer functions in

R-I/2(j_) would cause R(j_) to approach zero at high frequency. This

implies perfect measurements. Therefore, in practice, one should choose
-I/2
R (jw) to be proper.

Next, the modifiea measurement z1

zI = z - Du : Cx + v = y + v

If we define a shaped-measurement vector

l

Zl(j_) = R(j_) -I/2 Zl(J_ )

and the noise-free shaped output

l

Y (Jw) = R(J_) -I/2 Y(j_)

is considered

then a realization of the system with transfer function matrix

= + Bv Cx_v Av Xv

(4.14)

(4.15)

(4.16)

-I/2
R(J_) is

(4.]7)
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!

y = Cv xv ÷ Dv Cx (4.18)

with the shaped-measurement equation

I I

zI = Cv xv ÷ Dv Cx + v (4.19)

where v' is a white noise process as in (4.10).

The combination of equations (4.3) and (4.4), and (4.17), (4.18), and

(4.191 defines a dynamic system driven by independent white noise sources and

is a standard Kalman filtering problem:

• I I

x = Ax + Bu + Ke(Z l - Zl) (4.20)

xv = Av xv + Bv Cx + Kv(Z l - zl) (4.21)

' -1/2

zI is obtained from z using the realization of R :

xz = Av xz + Bv zI (4.22)

!

= + D zI (4.22)Zl Cv Xz v

Since equations (4.17) and (4.18), and (4.22) and (4.23) involve the same

realization, the redundancy in the estimation equations can be eliminated by

defining a new set of states [23]

x' = xz - xv (4.24)

The overall Frequency-shaped estimator equations are then given by
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[Ae°vC
(KvO v - Bv) C

I

I
I

A
S

KeCv

Av - KvC v
J

Ke Ov ]Bv - Kv Ov)'

Bls

[i.]_ . X

x = [c ,: o]

C
S

Z + [ i,i'eOv]u
Dv - Bv) D

Bs (4.25)

(4.26)

The control law is then based on x

u : KRIXI (4.27)

where KR is the regulator gain. A block diagram of the system showing the

frequency-shaped optimal estimator is shown in Figure 4.1. The filter in Eqs.

(4.22) and (4.23) acts as a prefilter on the measurements.

Theorem 4.1: The zeros of R-1/2 are the transmission zeros of the

frequency-shaped estimator whenever the sensors are frequency-shaped

individually.

Proof: The transmission zeros of the estimator (with input z and

output x) are given by those frequencies such that the matrix pencil

S(k) loses rank
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) BI]
sI -A s _ s

i 0
S(×) = Cs I

I sl - A ÷ K O C - K C

e v e v

S(k) = - (KvD v - Bv) C sI - Av + Kv Cv

I 0

K D
e v

(B v - Kv Dv)]
(4.28)

(4.29)

By performing elementary row and column operations,

I
sl_- A t 0 =

" l I

I

.... °v I
i I

I I 0 l

s(x)

K D
e v

Bv - Kv Ov

is equivalent to

(4.30)

-I
which loses rank at the location of the eigenvalues of (Av + Bv Dv Cv)

which are the ZerOs of R-1/2 since it is diagonal, as are Av, Bv, Cv,

and O . Q.E]O
V

-I/2
In the case of individually frequency-shaped sensors, R would be

diagonal and, if a frequency shaping of first order is introduced in all

sensors then

-I/2 Pi(s + Zi)
Rii =

Zi(s + Pi)
(4.31)

and hence

Av = diag {Pi } (4.32)

B = I
V

Cv = diag {
Pi(Zi - Pl)

Zi

(4.33)

} (4.34)
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(pl)Dv = diag

Notice that Rii's have unity D.C. gain. These will introduce lag

compensators into the measurement loops provided that

(4.35)

IZil > IPil (4.36)

which implies more noise at higher frequencies. Frequency shaping then

improves the robustness properties of the system at higher frequencies, while

maintaining performance at low frequencies. Notice that this is similar to

introduction of first-order lags of classical control, but is inherently

multivariable.

4.2 EXAMPLE 4.1

This example illustrates the ideas of internal model and frequency

shaping presented in Sections 2.2.3 and 4.1, respectively. The internal model

provides for asymptotically unbiased estimates in the presence of biases and

parameter errors, i.e., the estimate of the engine outputs track the output

measurements (i.e., z - z _ 0). Frequency shaping provides For robustness

with respect to unmodeled dynamic uncertainties. The combination of the

internal model and frequency shaping results in the desirable robustness

properties of the filter.

A turbofan engine model and its multivariable control law (the same as in

Example 3.2) at sea level static condition and PLA=36 ° was chosen for design

purposes. Figure 4.2a shows a steady-state run corresponding to Revision 2 of

the previous program [g]. This figure shows that the estimate of Nl, N2, PT4,

^

PT6, and FTIT do not track the measurements (i.e., z - z # 0 asymptotically).

If an internal model (integrators) for biases is introduced, then the

augmented system has the Form of (4.1) and (4.2). The estimator gains were

computed using CTRL-C [21] and are shown in Table 4.1. Figure 4.2b shows a

steady-state run with the internal model present in the engine/control model.
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Table 4.1

Kalman Filter Gain Matrix _

8.3760

4. 5611

1.3178

3.1891
-12.4951

2.0933

0.2311 0.0303
O. 4499 0.0173

0.0836 010048

0.670"1 -0.0033 0.0006 0.0001
Wtog---63 --o.'55-s3 -o: ta

0.0009 2.9770 0.0051 -0.00i4
0.0121 0.0476 1.5822 0.0000
0.0019 0 0036 0.0001 1.2247

_).0945 -0. 1824 --0.0054 -O. O00t

: n

-0.6314
-t.2775
-0.2963
-0.0004
-0.0429

0.0421
-0.0013
-0.0003

t.0077

I Filter

I Internal
Model
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(This corresponds to Revision 3 of the previous program [9].) Figure 4.2b
shows that the estimates nowasymptotically track the measurements(i.e.,

z - z _ O) for all outputs. Note that there is a dip in Figures 4.2a and

4.2b, which is due to initialization transients of the engine simulation.
Figures 4.3a and 4.3b are transient runs at sea level static condition and a

PLAstep from PLA=36° to 52° Figure 4.3a shows transient responses with no
internal model and Figure 4.3b illustrates the responses with the internal

model present. It can be seen from Figure 4.3b that the estimates follow the
A

measurements, i.e., z _ z ) O, in steady state.

There are now two internal models in the closed-loop system (i.e.,

integrators both in the filter and controller. Figure 4.4 is a block diagram

of the system showing the two internal models. The presence of the internal

model in the filter ensures z - z 4 O, and the presence of the internal
A

model in the controller ensures z - r _ O, which implies that r - z _ 0 in

steady state. Note that the controller has a partial internal model, i.e. it

only has integrators on Nl and PT6 outputs (see form of CI in Table 4.2).

Therefore, even thoughall the estimates are unbiased, we can only guarantee

zero steady-state tracking error in Nl and PT6 as seen in Figure 4.2b

and 4.3b. Note that in Figure 4.2b and 4.3b for the PT6 output, z - z error

has become zero whereas z - r error has not. This is because the integrator

(in the control law) associated with PT6 output has a small gain which

explains why this error is slow in decaying to zero (for details, see Ref. g).

We can now proceed to add frequency shaping in the filter. Based on the

results of a bound on model error (Appendix A), we chose to frequency-shape

all sensors using

-I/2(s lO_(s + 20_)
Rii ) = 20=(s + lO_)

i.e., a first-order lag with breakpoint at 5 Hz.

matrices
{Av, Bv' Cv' Dv}

(4.37)

The frequency-shaped system

are shown in Table 4.3, and Table 4.4 shows the
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Table 4.2

Proportional and Integral Gain Matrices

CP

-0.46_2
-0.0002
0.0065

-0.0025
0.0000

-I._502

0.0000
O. OOOO
0.0068

0.0001

-62.6000
0.0000

0.0000
0.0000

0.0025

-30.0927
0.0352

-0.342?

-0.%640

0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

Cl

-I0.00_2

-0.0020

0.0000

0.0000
O. 0000

0.0000
0.0000

0.0000
0.0000

0.0000

0.0000
O. 0000
0.0000
0.0000
0.0000

-20.0000

0.0300

0.0000
0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

Z
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ORiGiNAL

OF POOR

Table 4.3

Frequency-Shaped System Matrices

QUALITY

AV

-31 415q 00000 0.0000 0.0000 0 0000
0.0000 -31. 4[59 0.0000 0 0000 O. 0000

0 00Q0 0 0000 -31_4159 0.0000 0.0000
0 0000 0.0000 0.0000 -31.4t59 0.0000

0. 0000 0.0000 0.0000 0.0000 -31. 4159

IIV

I 0 0 0 0
0 l 0 0 0

0 0 t 0 0
0 0 0 ! O.

0 0 O. O. 1

CV =

15 7000 0.0000 0 0000 0.0000
0 0003 15 7080 0 0000 0 0000

0.0000
0.0000

0 0000 0.0000 L5 7080 0 0000 0.0000

0 0000 0.0000 0.0000 15.7080 0.0000
0.0000 0.0000 0 0000 0.0000 t_ 7080

0V

0 5000 0.0000 0.0000 0.0000 0 0000

0 0000 0.5000 0.0000 0 0000 0 0000
0 0000 0.0000 0.5000 0,0000 0.0000

0.0000 0.0000 0.0000 0.5000 0 0000

0.0000 0.0000 0.0000 0.0000 O. 5000

Table 4.4

Frequency-Shaped Filter Gain

KK

"83760

4 5611

! 3178

00701

3 tsqt 0 23ll
12 495[ 0 4499

20933 00836
-0 0033 0 0006

0 0303 -0 6314
0 0173 -l. 277_

0 0048 -0.2963

0.0001 -0 0004
-0.00|8 -0, 04_9

-0 0014 0 0421
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frequency-shaped Kalman filter gain matrix. The closed-loop filter poles are

shown in Table 4.5. Figure 4.5 shows the transient engine response corres-

ponding to the closed-loop system with both internal models and Frequency

shaping. Figure 4.5 shows the effects of the frequency shaping in this case,

i.e., the engine transient response has been slowed down slightly.

4.3 SUMMARY

In this chapter, we have discussed the design of robust filters for DIA.

The robustness properties of the filters are twofold. First, the Filter is

made robust with respect to parameter perturbations, using an internal model.

This is an extension to internal model principle of multivariable robust

servomechanism theory. The robustness property achieved is due to creation of

certain structurally robust blocking zeros. Second, the filter was made

robust with respect to other sources of uncertainty via frequency shaping.

This robustness property is achieved also through creation of certain

transmission zeros. The results were applied to a multivariable turbofan

engine example.
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Table 4.5

Closed-Loop Filter Poles

-23.4786 ÷ 4.92t5i

-23.4786 - 4.9215i

-13. 1757 - O. O000i

-29. 4962 ÷ O. O000i

-0. it60 + O. O000i
-2.0722 - 0.0000*

-1.8294 - O. O0001
-0.9693 ÷ 0.0146_

-0.9693 - 0.0146_
-1.5835 + O. O000i

-1.2255 + O. O000i

-3t.4027 + O. O000i

-31.3980 + O. O000i

-31.3860 + O. O000i
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V. EVALUATION RESULTS

5.1 INTRODUCTION

This chapter evaluates the results of this program through the validation

of the threshold selector results of Chapter Ill. Before the actual

validation, it is useful to summarize the results of the report and put the

evaluation results into perspective.

This report has presented the results of recent research in the

development of robust fault detection, isolation, and accommodation (DIA)

algorithms for sensor failures. Specifically, tools and procedures have been

developed that allow a designer to use information about model uncertainty

when designing a sensor DIA logic. This is a major step in developing an

ability to design and implement a practical fault-tolerant control system.

A DIA system, as treated in this report, consists of three main

components:

(1) a filter that compares measurements to predictions (based on a
model) to produce an innovations sequence;

(2) a norm computation that reduces the innovations to a single
measure useful for comparing against a threshold; and

(3) a threshold.

The goal of the design process described in Figure 1.9 is to select a

combination of these three components to produce:a system that has adequate

performance (smallest magnitude of failure detectable, speed of detection, and

minimum false alarm rate) without being excessively complex.

The emphasis of this reported effort has been to provide tools and

procedures that allow the design process of Figure 1.9 to be carried out.

Specifically produced have been techniques that
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(l) permit the performance of filter innovations measure combination to
be computed analytically using an estimate of the model uncertainty

in the system; and

(2) permit a filter's performance to be improved by incorporating a

knowledge of the modeling error bounds in its design.

The first was addressed in Chapter III under the heading of the Threshold

Selector; the second was addressed in Chapter IV.

Selecting the best filter/innovations measure combination is a multistep

and iterative process (Figure l.g). The filters used to generate the

innovations sequences can vary in complexity from constant gain types to ones

that include frequency shaping and internal models to a fully adaptive design.

As a general rule, increased complexity is required to improve the filter

performance. The study reported in Ref. g dealt with constant gain filters.

This report described the use of frequency shaping and internal models to

improve filter performance in the presence of modeling errors. Adaptive

filter designs are left for future studies.

Many measures of the size of innovations sequence are also possible for

consideration. Examples include weighted _um _quared [esidual (WSSR),

likelihood ratio, and generalized likelihood ratio. The performance of each

in combination with the different filters could be different and should be

investigated before a final system is designed. Note, however, that the only

measure of the innovations sequence dealt with in this effort in the WSSR

norm. This is the same as that used in Ref. 9.

While the filter and size of innovations measure selections are clearly

critical to designing a successful DIA system, it is the ability to evaluate

analytically the performance of the combination that makes the design process

of Figure l.g feasible. This capability is what is provided by the Threshold

Selector described in Chapter III. It produces an estimate of the sizes of

the smallest failures that can be detected and a measure (i.e., threshold)

against which the norm of the innovations sequence can be compared to

determine the presence of a failure.
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As an example, the threshold selector can be used to predict the

performance of the robust Filter designed in Chapter IV. Figure 5.I shows the

threshold selector results For a soft Failure using the robust filter with

internal model and frequency shaping designed in Example ¢.I. This figure

shows that the robust filter is capable of detecting failures of smaller size

compared to the constant gain filter developed in Ref. 9 (compare Figures 5.1

and 3.10).

5.2 VALIDATION OF THE THRESHOLD SELECTOR

Because of its critical role in the design process, the ability of the

Threshold Selector to predict realistic thresholds has been validated

experimentally. The goal was to demonstrate the fact that induced Failures

are detected and that false alarms are avoided.

The filter�norm chosen for this demonstration is the same as that

developed in Ref. 9 for a multivariable turbofan engine. Specifically, the

Filters are constant gain Filters with no frequency shaping or internal

models. The norm is a WSSR. The flight condition is sea level static at 36°

PLA.

The reason for this filter/norm choice is that it allows direct

evaluation of the Threshold Selector only. Reasonable thresholds were

determined empirically for this combination and a full evaluation was

performed in a previous program [g]. Consequently, there is a data base

against which to compare the results obtained with a new threshold implemented.

Compared in Table 5.1 are the thresholds determined empirically in the

previous program [9] and the thresholds computed with the Threshold Selector.

Note that while the results are of similar magnitudes, the Threshold Selector

computed values are smaller. This indicates that failures of smaller

magnitude can be detected (and Faster) with the Filter/norm combination than

were previously expected. Required to be validated experimentally is that

false alarms are not induced as a result of decreasing the thresholds.
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Table 5.1

Comparison of Sizes of Thresholds

TYPE OF FAILURE

HARD

SOFT

SIZE OF THRESHOLD USED IN
REVISION 2 OF REF. g

2.0

l .43

SIZE OF THRESHOLD COMPUTE[
BY THRESHOLD SELECTOR

.62

.62

Our evaluation consisted of the comparison of failure detection times for

various failures using the thresholds in Ref. g and the thresholds computed

using the threshold selector. A turbofan engine dynamic model (the same one

as in Examples 3.2 and 4.1) at sea level static condition and PLA = 36° was

used for this evaluation. Figures 5.2 through 5.4 compare the response of the

same DIA algorithm (i.e., the same filter/norm combination) for the two

threshold levels presented in Table 5.1. Figures 5.2 and 5.3 present selected

responses to a hard failure in Nl for the DIA scheme using the emDirical

threshold and the Threshold Selector computed threshold, respectively.

Figures 5.4 and 5.5 present the results for a hard failure in N2. Figures 5.6

and 5.? present the results of a drift failure in Nl. Figures 5.B and 5.g

present the results of a drift failure in PT4. Note that key events

characteristic of all the plots are indicated in Figure 5.2.

The results are as expected and are summarized in Table 5.2. Large step

failures create a WSSR norm of the innovations sequence larger than the

threshold in both cases and trigger a failure indication within one window

width of the WSSR norm. The size of the norm has no effect on the

performance. For drift failures, however, the smaller threshold does permit

more rapid detection of the failure.
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Figure 5.6 Failure Transients for N1 Sensor Drift Rate of 300 RPM/second at

Sea Level Static Condition and PLA = 36° using Method [g] (see
Table 5.2)
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Table 5.2

Comparison of Detection Times

TYPE OF FAILURE

Nl HARD FAILURE
+lO00 RPM STEP

N2 HARD FAILURE
+lO00 RPM STEP

N1 DRIFT RATE OF
+300 RPM/SEC

PT4 DRIFT RATE

OF +lO PSI/SEC

DETECTION TIME (SEC) USING
METHOD (REVISION 2) [g]

0.002

0.002

4.466

4.584

DETECTION TIME (SEC)
USING THRESHOLD SELECTOR

0.002

0.002

1.734

2.042

Of primary importance in this compari'son is that this increase in

performance was gained without a penalty of false alarms. This verifies that

the Threshold Selector does produce a useful estimate of the threshold and can

replace the previously required empirical approach to threshold calculations

to accommodate modeling errors in addition to noise considerations.

5.3 SUMMARY

This chapter has presented evaluation results for this research effort.

The results of this study were summarized at the beginning of this chapter.

The evaluation validated the threshold selector results. It was verified that

the generally lower thresholds, predicted by the threshold selector analysis,

results in improvements for soft failure detection. This is done without

triggering false alarms. The detection time was lowered by at least a factor

of two for soft failures compared to previous techniques.
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VI. CONCLUSIONS

This report contains the results of recent research in the area of robust

fault detection, isolation, and accommodation for sensor failures. The

results have been illustrated by application to sensor DIA for an aircraft

turbine engine. At the center of attention is model uncertainty. Model

uncertainty has been singled out as the main source of problems with previous

DIA algorithms as it affects performance. Various sources of model

uncertainty were discussed. The effects of model uncertainty are represented

by a bound as a function of frequency. This is consistent with recent

approaches in robust control theory. The effects of model uncertainty on

stability, asymptotic tracking, and tracking performance was studied and new

performance robustness measures were derived. The effects of model

uncertainty on failure detection were also studied. The main machinery used

was robust multivariable control theory. Fundamental results were derived for

selection of optimal thresholds in innovations-based DIA algorithms. The

estimator logic used in the DIA technique was made robust by providing

robustness both at low and high frequencies. Evaluation results show

improvements compared to previous techniques.

The general contribution of this research has been the extension of

recent advances in robust control system design to sensor DIA and estimator

design. The specific contributions are:

analysis tools with which to quantify the trade-off between
performance robustness and DIA sensitivity;

design methods which allow higher levels of performance
robustness to be achieved for given levels of DIA sensitivity;

demonstration of the applicability of these tools using an

aircraft turbine jet engine multivariable control example.

A powerful synthesis tool has been developed for DIA algorithms. This would

allow for optimal achievable levels of performance. In particular:

133



a "threshold selector" has been created which quantifies the
effects of uncertainty on DIA performance;

- measureshave been derived to quantify the uncertainty and the
performance robustness.

The advances to robust estimator design to achieve higher levels of

performance robustness include

the development of estimators using the "internal model
principle" to achieve asymptotic convergence despite model error;

the incorporation of frequency weighting in an LQG cost
functional to modify an estimator design for DIA.

The results were demonstrated on a dynamic simulation of a multivariable

turbofan Jet engine example and showed improvements over previous techniques.

The results of this research can be pursued in other directions. It is

possible that even higher levels of performance are achievable in some cases

by an adaptive technique (see Figure 1.9). It would also be interesting to

pursue the idea of this research in a decentralized control strategy. This is

important as integration of Flight and propulsion control systems is being

considered [25].
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APPENDIXA
GENERATIONOFBOUNDONMODELUNCERTAINTY

A.l SYSTEMUNCERTAINTIES

All nominal design models of a system (plant) contain somedegree of

modeling errors. High fidelity models represent a plant more accurately than
others. These errors are called "model uncertainties." There are, in

general, two types of uncertainties: structured and unstructured. For

example, the former refers to model parameter uncertainties, whereas unmodeled

dynamics lies in the latter category. Reducedorder modeling, linearization
about operating points, neglecting nonlinearities, all result in contributions
to either structured or unstructured uncertainty.

The model uncertainties can be broadly grouped into two categories:

(1) uncertain external inputs

- reference commands
- environmental disturbances
- biases or drifts in a failed sensor

(2) uncertain internal dynamics

- plant model errors
sensor failures

- controller or estimator reconfigurations from DIA

The representations of the model uncertainty vary according to howwell

its structure is known. For a highly structured representation, e.g.,

aerodynamic coefficients in flight control, engine model parameters in engine
control, the uncertainty can be represented by defining a range of variation

in the parameter space. For less structured uncertainties, boundson errors

can be defined. The model uncertainties can in general be classified as

additive or multiplicative. The additive type of model uncertainty is defined
as follows
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with

P(s) = Po(S, c*) + A(S)

;[A(S)] < 6 (_) -V-_ > 0 (A.l)

where P(s) is the transfer function of the plant, Po(S, c*) is the

nominal parameterized model of the plant, with structured uncertainty c*. In

other words, P (s, c*) is a known function of c*, but the values of c*
o

are uncertain. The function a(s) is the variation in the nominal model,

Po' and is an unstructured uncertainty. It is unknown but limited to be

some function bounded by 6 (_), where 6 (_) is a positive

scalar Function which defines a bound on P in the neighborhood of P. It
o

can be viewed as a frequency dependent "radius" of uncertainty of the true

plant, P(s), about some model Po(S, c*) for all c*. Figure A.la

illustrates the additive type of uncertainty. In general a good model will be

well known at low frequencies where _ (_) will be small, and less well

known at high frequencies where 6 (_) will be large. This type of

curve is characteristic of unmodeled, uncertain, high-frequency phenomena.

Note that in equation (A.l), the structure of a(s) is not defined, and may

be caused by a variety of mechanisms (For example, parameter changes,

unmodeled dynamics, etc.). The two types of multiplicative uncertainties are

the input multiplicative and the output multipliqative and are given by the

following equations.

with

with

Input multiplicative:

p(s) : P (s, c*) [I ÷ a(s)]
0

o[A(s)] < am(_) -V-_ _ 0

Output multiplicative:

P(s) = [I + A(s)] Po(S, c*)

(A.2)
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Figure A.la Additive Perturbation

U I +A Y

Figure A.Ib Input Multiplicatlve Perturbation

U I +A by

Figure A.Ic Output Multlplicative Perturbation
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_[a(s)] < _m(_) -_ _ 0 (A.3)

Figure A.Ib and A.Ic shows the representations of the multiplicative type of

uncertainties.

For the multivariable jet engine example [12], an output multiplicative

bound was determined. This bound takes into account both the structured and

unstructured uncertainties. This will represent a bound on such model

uncertainties as, unmodeled dynamics, parameter variation in system matrices

(A, B, C, and D), unmodeled nonlinearities, reduced-order modeling, and

linearization.

A.l.l Why Determine Bounds on Model Errors?

Under the NASA contracts NAS3-22481 and NAS3-23282, the feasibility of

the DIA concept for application to the multivariable jet engine was

demonstrated. However, several problem areas were identified which are stated

below:

(1) steady-state and dynamic mismatch of the simplified nonlinear
models of the engine;

(2) steady-state estimator errors, with no sensor failures;

(3) instabilities when accommodating failures;

(4) accommodation inaccuracies; and

(5) missed detections and false alarms.

These problems arise from system uncertainties.

The fundamental control design problem is to establish the relationship

between performance, robustness, and system uncertainty. The first two are

conflicting requirements and need trade-off or design compromises to meet the

system requirements. A unified method of approach is to:
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(1) establish Quantitative relationships betweenperformance,
robustness, and system uncertainty;

(2) recognize that the plant model error, sensor failures, and DIA
reconfigurations all belong to the same class of system

uncertainty.

Figure A.2 illustrates how the system uncertainties can be isolated. The

dynamic uncertainties such as model errors, sensor failures, and DIA

reconfigurations, are "inside" the system and function as a feedback loop

around the "interconnection" system. This system maps the external and

internal uncertainties into the outputs, i.e., tracking error and filter

residuals. The dynamic uncertainties propagate in a specific way so as to

cause a quantifiable uncertainty about the map from the input into the

outputs, provlded bounds can be found for the dynamic uncertainties. These

bounds are obtainable from simple input/output system tests, and are to be

used in robustifying the filter/s and determining the thresholds.

A.I.2 Model Error Bound for Output Multiplicative Error

A bound for model uncertainties can be obtained experimentally as shown

in F_gure A.2. In F_gure A.2a, P represents a h_gh-fidel_ty simulation of

the plant whereas Po is a simplified low-order linearized model of the

plant. A sinusoidal test input is applied to the plant and the model. The

error is defined as

e = P(s) _u - P (s, c*) &u
0

= (I + 8)Po(S, c*) _u - Po(S' c*) _u

= AP (s, c*) Su (A,4)
0

The normalized error, _(_),

bound, and is given by

provides a worst-case frequency-dependent

II e I1_
6(_) --max ...... (A.5)

U II Po(S, C*) &U II2
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Figure A.2a Experiment to Determine Model Error Uncertainty

(_): I!'_11/tl7ml !with u = %* a sin _t
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Figure A.2b Frequency-Dependent Uncertainty
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where I1,112 iS the norm, and _(w) is the bound on model

uncertainty. Figure A.2b shows a typical bound on the model error

uncertainties, which includes structured and unstructured uncertainties.

A.2 QUANTIFICATION OF MODEL ERROR UNCERTAINTIES

This section describes a method to quantify the model error uncertainties

using the experimental procedure given in Section A.l.2. The error bound was

determined for a Jet engine model [12]. A description of this model is also

included in this section.

A.2.1 Computation of Model Error Bound usinq the Turbofan Model

An experimental procedure to determine a bound on model error was

discussed in Section A.l.2. A nonlinear fourth-order engine model (HYTESS - A

Hypothetical Turbofan Engine Simplified Simulation [12]) was used to represent

the physical plant, i.e., the turbofan engine (see Figure A.2a). The model

P was represented by a linear model of the engine at sea level static
o
flight condition and PLA at 36° (0/0/36). By applying the same sinusoidal

input to P and P an error signal between the outputs is computed using
O'

Eq. (A.4). A frequency-dependent error bound is determined using Eq. (A.5).

The procedure for determining the error bounds is shown in Figure A.2.

step-by-step discussion follows.

The states of the system are:

xl = Fan Speed, SNFAN (Nl) - RPM

x2 = Compressor Speed, SNCOM (N2) - RPM

x3 = Burner Exit Slow Response Temperature, Tt41o - °R

x4 = Fan Turbine Inlet Slow Response Temperature, Tt4.51o - °R

The engine inputs are:

ul = Main Burner Fuel Flow, WFMB - Ib/hr
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u2 = Nozzle Jet Area, Aj - ft 2

u3 = Fan Guide Vane Angle, FGV- deg

u4 = CompressorStator Vane Angle, SVA- deg

u5 = CompressorBleed Flow, BLC- %

The engine outputs are:

yl = Fan Speed, SNFAN(Nl) - RPM

y2 = CompressorSpeed, SNCOM(N2) - RPM

y3 = Burner Pressure, PT4- psia

y4 = AugmentorPressure, PT6- psia

y5 = Fan Turbine Inlet Temperature, FTIT - °R

The system matrices for the linear model and HYTESSare shownin Tables A.l

and A.2, respectively.

A.2.2 Description of the Enqine Models

Two models of a jet engine are discussed in Section A.2.1, namely, HYTESS

and a linear model at 0/0/36. Both models are fourth-order state space

models. HYTESS is a nonlinear model generated by scheduling linear model
-l

matrices (A, A B, C and D) over the Flight envelope using normalized

variables (such as 6, e, P/B, T/e, N/re) as scheduling parameters.

The linear model was extracted from HYTESS at the flight condition of altitude

= 0 feet, Mach No. = O, and PLA = 36°

where

The linear fourth-order state space models are of the form

= Ax + Bu

y = Cx + Du

T

x = Ix l x 2 x3 x4]
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Table A.I

Jet Engine SystemMatrices

A m

-3.9180 2.9550 -1.5450 6.2260
-0.2560 -2. 1480 8.4370 0.0482
-0.0035 -0.0045 -0.6663 0.0003
-0.0075 -0.0146 -0.0499 -2.0000

1.0D+04 *

0.0001
O. O00t
0.0000
0.0000

0.3071
0.0395
0.0002
0.0004

-O. O06B
-0.0003
0.0000
0.0000

0.0021
0.0015

0.0000
0.0000

-1.3290
-0.7886

0.0034
0.1618

C

1.0000
0.0000

0.0147

0.0031
-0.0377

O. 0000

1. 0000
O. 0284

O. 000 t
-0. 073%

0.0000

0.0000

-0.0011
-0.0010

-0.2495

0.0000
0.0000

-0.0009
-0.0007

0.0018

D m

0.0000
0.0000

0.0087
0.0008

0.2050

0.0000
0.0000

-8.2350

-5.7450

18.5200

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

O. t824 O. %B55 -175.8000
0.0462 -0.0032 -6.8890

-0.5299 -1.7080 482.9000
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Table A.2

Simplified Nonlinear Model Matrices

FULL ENVELOPE MODEL OF A MATRIX

F_L,4}--_-_O..9_3E_iZDL_O.-IB86E-2*XPT&*e2-2.463

F_2,_1 ) - -0_ i820E-3*XN1+O_ 27&OE-9_xPT6*XNl**2-30. 7721
F(3, 1) - -0.2_01E-2*XPTb+O. B295E-4*XTT45-O. 8207E-1
F(4, 1) = O.$353E-2/DLl+O. I038E-8*XPT4**3-O. 2724E-1

F(I,2)_r= _0.259bE+I*THl÷O. 815?E-I/DL1÷5.78

E(_?._21- -. -O..2381E+l/.T_i_O_2348E-7*XNI*_+1..549 "-

F(4,2) = -0. IOIOE-I*DLI-O. 2312E-1/DLl+O. 29?bE-!

F(I,3)_.= _I.
F(2,3) = -0.

F(3,3) = -0.
F(4,3) = -0.
F(I,4) = -0.

F(_,4) = O.
F(3,4) = O.
F(4,4) = -0.

597

1569/DL1+O. 23S2E-I*XPT4+4.2890

&377/DL1+O. 5218/THI-0.5229

115b

1143/DL1+O. 8349E-7*XNI**2+I.074

6013E-1

2632E-2

1914E+I/DLl÷Oo !S&4E÷1/THI-1. 568

FULL ENVELOFE MODEL OF A-_ B HATRIX

FI¢(1,1)

FI¢(2ol)
FIg(3,1)
FI¢(4,1)

FIg(1.2)

FI_(2,2)
FIg(3,2)

FI¢(4,2)

FI¢(1,3)

Fig(2,3)

FI¢(3,3)

FI¢(4o3)
FI¢(1,4)

FIC(2,4)
FIG(3,4)

FI¢(4,4)
FIg(I,5)

FIg(2,5)

FI¢(3.5)
FI_(4,5)

•, O.

_0°

O,

O,

m,- toO.

m O.

O,

O.

9327E-3*XNI-O. 3145E-II*XNI**3-6. 5b

3616*THI-O. 3850E+8/XNI**2+0.4541

1183E-3*XPT4-O. 3&3E-@*XPT4**3-O 372E-I

9333E-3*XPT_-O.?744E-9*XNI_XPT_*_2-O. 30_E-I

2971E+2*XPT6+O. 2182E+_/(THl©DLI}-260.4

1121-XN1-0. 1545E-2*XPT4_XPT6**2-7_1.8

5845E-I*XPT4-O. 7198E-4*XPT4*XPT6**2-I. 5_S

3761*XPTa-O. 5675E-4*XPT4*XPT6**2-1".41B

i

i¢

III

III

il

III

lB _0.

Ill _Oo

= O. 16_7*XPT4-O. 4133E-4*XPT4*XPT&**2-2. I04

- 0.275*XPT6-6.304

= O. 130bE-I*XPT6-0.2379

O. I068E-I*XPT&-O. 1881

O. B67OE+I/THI+O. 5OgOE-I*XPT4-2&. 19

O. 11&SE÷3*THI+O. I092E+3/THI-220. 7

0.2010-TH1-0. 12_E-2*XPT4÷O. 2459

O. 938&E-1*THI-O. 1157E-2*XPT4+O. 2_51

O. 5357E÷4/(DLI_RTHI)-_5.87

O. 3754E+4/(DLI*RTHI)+157.9

9392E+2*(RTHI/DL1)-O. 739qE+1*(THI/_Ll**2)÷8 53

85_4E+2*(RTH1/DL1)-O. 5902E÷I_(THI/DLI**_÷9.7
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Table A.2 (Continued)

FULL ENVELOPE MODEL OF C MATRIX

Nil, II - I.

H¢2. i I - O.

HI3* I P " --0, 24J| 41[*1/[PT4-0. 2_?I_-$*IPT4*[PTb 4_. 4"J41i(--t

N(4, I1 * --0. S'I|II/XPT4-'O. 4_:_0_--|0*LN|**2*_. 4_3'b'_-2

H(_ |) - 0. 07141r-3*[PT4*<). Z?Ok_*2/ZPT4-O. )04,?

N(&, || * 0. ffiE4/THI--O. =49|1_*4/tPT4**2*"0. 1514

14(:r, l I - O. 31|gt[--21IPT&--O. 297¢_-l/|PT6**- "_'_ 7264A[-4

"H(j, =) ,i O,

1412. 21 - I.

H(3e.2L.-" __0..241Pl _[.--_/THI _). 4644(-3*IPT&-O. 113_1_-1

14r141 21";';-0. 90001-TeINI--0. 4.6_&41_-IlIpT4*0. IIS_-2

H(Se2$ - "_. |'1271-3e_TT45--0. |_071[*4/[NL_0. _.D14

H( L- 2) " O. g2O7£-f

i417. 21 -- O. 21S_--S10LI_0, 6102/][PT4*_:_0. $_--4

H(I, 31 * 0.

N¢a. 31 - O.

H(3* 3J - -.0. 7370_--Te[PT6-*'t-0. 4_b71[-3

H(4. 31 " --0. _041[_ke]CN2*_. 239_(-2

H(S*3) -- O. 3|||i[-10T_4|_-0, $4e&_--4e_TT4_-0. =i_&2

ki(d_ 3| - 0. 144_--|/0_J.-_. 127|R-3*[H|*Q. 31_k

H(7,3s - -<3. 1322_-S

H(|. 4| - O.

H12. 41 -- O.

H(3. 41 -- .-0. IgOO_-2*_PT6_). 3|7_-2

H(4. 4) e _0. 4:](_)l[--Sel[PT4--0. _|0_-,4

H(_. 41 - O..64_db_-2

H(&. 41 -- O. I14_4[-IIIX.I-0. 130<14[-2,+I[N1,,'.¢. SlrJ

H(7. 41 - --0. 13241-$

ORIGINAL PAC_I;._i:_
POOR QUAL!TY

FULL ENVELOPE MODEL OF D RATRIX

O(l. ll " O.

D12. II o O.

O4l_l. II " -'0. 41_]_(--14*[N1**3+0. I ql_-$l[P_'_'e*:e'0" H7_"_ 2

014, II - -O. 94421[-701[N1--O. 22071-$1IN|*02 +0- .'_Q96_ 2

01_* 11 - _0. :_4|i[-|0TI4|_0. "11"I_[*2/1U_T4*'O. 4q&4_-1

D(dl_ 1| -- -'0. 6e_Oi[+411[NL*_3. 132_A[*_/r.N2*e2*_ 34_0_

0(7. I I - _0, e329(-2/XPT4_0. |03_--4

011,21 - 'J.

0(2, 21 - _.

0(3. 21 - -0, 7192J[-2eIPT6**3*I. 255

014.21 - -0. 4047e[PT/J+_. 9_g

0($*2| * 0. 2&SEI[-2eIPT&**3-?. 119

0(4** 21 " --0. 2704i_-4/T14|*'0. 05_A[*7/M|*131. •

017,21 - -0. 3_621-&eEPT6**3_). 28_1q_-:3

D(I. 3) - O.

0(2* 31 - 0.

01_]_ 3| " 0. 53_ll[-2el_PT4"O. I&70_-S,_IPT4eIpT&**2"O. 4101

014* 3| " O. IIII l _I,I[-'IeEpTd-Q.+ _'_3&_-ql* _PY4* e3"O* 643_-1

O(S*31 -- O. IlI04[--_*EPT4e*3--0. 17111_-_elN|elCPT4_O. _4q'q

O4f&,+311 - O. 1"_4_(_'|e[PTk-I_. &7

O( 7, '11 a+ O. 204q_--'!

0(I. 4| ,', O.

012, 41 - O.

0(3,41 ,, 0.7L_IeTHI--0.4&4,k

0(4. 41 m "0. 36_'2

O(_l* 4 | e "O. 21471*l*THI _O. 271 drd_- ?,lrJ41 _*2- I. 31

O(dl,. 41 - I. 073

01?.41 o O. S_i_ 2eTl_|--0 14_14i_ 2

O(I,:l - 0.

0(2* $1 * O.

Dr3. $1 ", -0. 31&,.q(+3/Dl.l--0. i4AI_*I*ICPT4*425. •

014t,, :1| * -"0. 144,di_'+_'e(RTl"i|/01.11"¢. 9"34A)_-1 exPT4*24- 09

D15,$) " 0. 11113E'4/_.1-+3_.2

O(&* :ll ", -0. 74B2_+4/[]4.1-1454. 0

D(7, $1 " O. IMS&IO(.I_O. 2:1414_-1
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T
u = [uI u2 u3 u4]

T
Y = [Yl Y2 Y3 Y4 ]

A.3 DETERMINATION OF MODEL ERROR BOUND

The procedure for computation of the error bound on modeling error is

shown in Figure A.3, and a step by step discussion follows.

Step l: The input to the system is a sinusoidal signal superimposed on a

constant signal. This input is of a specific frequency and of high amplitude,

i.e., the amplitude of the sinusoid should be carefully selected so that the

region of operation of the simplified model remains linear. The amplitudes of

the sinusoid for each input were determined from Ref. 24. These input

amplitudes give the best overall match between the linear and the nonlinear

models of the engine. These amplitudes are as follows:

u(1) = WFMBH 3 %

u(2) : AJ 3 %

u(3) = ClVV 5 degrees

u(4) = RCVV l degree

u(5) = BLC 0.2 %

The inputs were excited one at a time according to the procedure. The outputs

of P and P are sinusoids superimposed over a transient (system
o

transient), as shown in Figure A.4. Once the transient dies out, the outputs

are sinusoids of constant amplitude. The magnitude of the outputs are

determined by computing the amplitude of the sine waves. The error, e, is

determined by subtracting the output of the plant, y, from the output of the

model, ym, and then computing the magnitude.

_: The bound, 6(w), on the model error is given by
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(PLANT)
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FIND NORM OF 6 MATRIX

AT FREQUENCY

Figure A.3 Procedure for Computing Error Bound, 6(_o)
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Figure A.4 Compressor Speed Response when CIVV is Modulated with
Sine Wave at 5 Hz
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6(_) =

611 .............. _15

651 .............. 655

(A.6)

Each input when excited, produces errors in all the five outputs, which

determines one column of the 6 matrix. For example, if uI is

modulated with a sinusoid, it produces

_11 = IlYl - Ymlll / Ilymlll' 621 = IlY2 - Ym211 / llym211....

651 =tly 5 - Ym5H / IlYmSll.

This gives the first column of the 6 matrix. Similarly, other four inputs

are excited one at a time to determine the other Four columns of the 6

matrix. To determine the bound at a given Frequency, 25 elements of the 6

matrix have to be computed.

Step 3: The simplified model has a bandwidth of about 5 hz. A range of

Frequencies From 0 hz (DC) to 9 hz was chosen for computation of the

matrix. The discrete Frequencies at which a was computed are O.l, 0.3,

0.5, 0.7, 0.8, l., 2., 3., 4., 5., 7., 9. hz.

St_.__.p_4: At each Frequency, the maximum singular value of the 6(_)

matrix is computed. This is denoted by _[a(_)], and is the worst case

bound at that Frequency. Figure A.4 illustrates a plot of _ against

Frequency.

A.4 DISCUSSION

The bound on the model errors determined in this procedure has some

limitations. The plant is represented by a simplified nonlinear simulation

and the model is linearized at one flight point. This limits the validity of

the model error bound to only one Flight condition. This also does not
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include the errors which arise from the unmodelednonlinearitles and the

linearization of P(s) to produce simplified model Po(S). For a more
general error bound, the plant should be represented by the cycle deck, and

the bound 6 should be determined at all the representative flight points

in the flight envelope. However, cost is an important consideration in such
an exercise.

There are markeddifferences between the theoretical curves of Figure A.2

and Figure A.5. The error bound is expected to grow at high frequencies
(Figure A.2b), but as seen in Figure A.4, it is constant. This is attributed

to the fact that the plant and the model are of the sameorder and have

approximately the sameA, B, C, and D matrices at 0/0/36. The difference in
the system matrices }s that the mode] is represented by the constant A, B, C,

and D matrices (Table A.l) whereas the plant P (s c*) is represented by
i 0 m

the A, B, C, and D matrices which are polynomial functions. The error bound

in this case is a constant. This can be shown using equation A.3 as follows,

P(s) _ [I + a(s)] P (s, c*) (A.7)
o

where P(s) and P (s, c*) are of the same order. In reality, 8(s)
o

would be a complicated transfer function of order different from the order of

P(s) or Po(S, c*). In this case it is simply a constant and therefore the

error bound _(_)

equation,

is a constant in Figure A.5 as shown by the Following

liP(s) - P (s c*)ll
o '

lim
IIPo(S)ll

= lla(s)ll= constant (A.8)

It is expected that if high-frequency dynamics is added to the plant P(s), the

m

high frequency response of _ in Figure A.5 will follow the pattern of

Figure A.2b.

The difference between the two models P(s) and P (s, c*), causes the
o

peak at low frequency in Figure A.S. This difference gives rise to different
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dynamic responses. It is expected that if the two models are exactly the same

(no modeling errors), the plot of _ should be a constant, i.e., _(w) -

(constant) = O.

A.5 SUMMARY

A procedure to compute the bound on the modeling errors is developed and

demonstrated on an engine example. The bound is limited to only one flight

condition. For a more general bound, a comprehensive experiment will have to

be run where the plant is represented by the cycle deck and the experiment

conducted at a number of operating points on the Flight envelope, with

particular emphasis on the choice of the amplitude of the input signals.
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